
CA-IDMS®
Online Debugger

15.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

THIS DOCUMENTATION MAY NOT BE COPIED, TRANSFERRED, REPRODUCED, DISCLOSED, OR
DUPLICATED, IN WHOLE OR IN PART, WITHOUT THE PRIOR WRITTEN CONSENT OF CA. THIS
DOCUMENTATION IS PROPRIETARY INFORMATION OF CA AND PROTECTED BY THE COPYRIGHT
LAWS OF THE UNITED STATES AND INTERNATIONAL TREATIES.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS
IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGE-
MENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY
LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,
INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

THE USE OF ANY PRODUCT REFERENCED IN THIS DOCUMENTATION AND THIS DOCUMENTA-
TION IS GOVERNED BY THE END USER'S APPLICABLE LICENSE AGREEMENT.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227.7013(c)(1)(ii) or applicable successor provisions.

First Edition, December 2000

 2000 Computer Associates International, Inc.
One Computer Associates Plaza, Islandia, NY 11749
All rights reserved.

All trademarks, trade names, service marks, or logos referenced herein belong to their respective companies.

 Contents

How to use this manual . v

Chapter 1. Introduction . 1-1
1.1 About the debugger . 1-3
1.2 Debugger features . 1-4
1.3 Debugging process . 1-6

1.3.1 Prompt mode . 1-6
1.3.2 Menu mode . 1-8
1.3.3 Setup phase . 1-11
1.3.4 Runtime phase . 1-11

1.4 Session considerations . 1-13
1.4.1 Performance standards . 1-13
1.4.2 Valid breakpoints . 1-14
1.4.3 Program currency . 1-14

Chapter 2. Command Considerations . 2-1
2.1 About this chapter . 2-3
2.2 Expression components . 2-4

2.2.1 Debugger symbols . 2-4
2.2.2 User symbols . 2-6
2.2.3 Program symbols . 2-7

2.2.3.1 Data field names . 2-7
2.2.3.2 Line numbers . 2-8
2.2.3.3 Qualifying program symbols . 2-8

2.2.4 Expression operators . 2-9
2.3 Length attributes . 2-11

2.3.1 Expressions with data characteristics 2-11
2.3.2 Expressions without data characteristics 2-12

2.4 Parsing rules . 2-14
2.5 Command modification . 2-15
2.6 Delimiters . 2-16
2.7 Data values . 2-17
2.8 Command format . 2-18

Chapter 3. Debugger Commands . 3-1
3.1 Summary of commands . 3-3
3.2 AT . 3-4
3.3 DEBUG . 3-7
3.4 EXIT . 3-9
3.5 IOUSER . 3-10
3.6 LIST . 3-11
3.7 MENU . 3-14
3.8 PROMPT . 3-15
3.9 QUALIFY . 3-16
3.10 QUIT . 3-18
3.11 RESUME . 3-19
3.12 SET . 3-20

Contents iii

3.13 SNAP . 3-24
3.14 WHERE . 3-26

Chapter 4. Debugging in Menu Mode . 4-1
4.1 Features of menu mode . 4-3
4.2 Screen design . 4-4

4.2.1 Heading area . 4-4
4.2.2 Display area . 4-7
4.2.3 Specification area . 4-7
4.2.4 Selection area . 4-7

4.3 Accessing screens . 4-9
4.3.1 Screen hierarchy . 4-9
4.3.2 Screen sequence . 4-10
4.3.3 Selection processing . 4-10
4.3.4 Command currency . 4-11

4.4 Activity screens . 4-12
4.4.1 At screen . 4-12
4.4.2 Debug screen . 4-13
4.4.3 List screen . 4-14
4.4.4 Resume screen . 4-15
4.4.5 Set screen . 4-16
4.4.6 Snap screen . 4-17

4.5 Global help screens . 4-19
4.5.1 Usage screen . 4-19
4.5.2 Symbols screen . 4-19
4.5.3 Keys screen . 4-20

Chapter 5. Aids for Debugging Assembler, COBOL, and PL/I Programs . . 5-1
5.1 Overview . 5-3
5.2 Compiler options . 5-4
5.3 COBOL programs . 5-5

5.3.1 Preliminary computations . 5-5
5.3.2 Sample COBOL online debugger session 5-9

5.4 PL/I programs . 5-11
5.4.1 Preliminary computations . 5-11
5.4.2 Sample PL/I online debugger session 5-14

Index . X-1

iv CA-IDMS Online Debugger

How to use this manual

How to use this manual v

 Contents

This manual provides detailed instructions for users debugging programs that operate
in a CA-IDMS/DC and CA-IDMS/UCF environment. The manual contains four chap-
ters:

■ Introduction — General presentation of the debugger

■ Command Considerations — Description of the expressions that can be used in
debugger commands, the length attributes of debug expressions, and user-supplied
data values

■ Debugger Commands — Detailed discussion of each of the debugger com-
mands

■ Debugging in Menu Mode — Detailed description of screens and how to use
them for debugging

vi CA-IDMS Online Debugger

For more information

For further information related to this manual, see:

■ CA-IDMS System Generation

■ CA-IDMS System Operations

■ CA-ADS Reference Guide

■ CA-IDMS Navigational DML Programming

■ CA-IDMS Security Administration

How to use this manual vii

Understanding syntax diagrams

Look at the list of notation conventions below to see how syntax is presented in this
manual. The example following the list shows how the conventions are used.

UPPERCASE

OR

SPECIAL CHARACTERS

Represents a required keyword, partial keyword,
character, or symbol that must be entered com-
pletely as shown.

lowercase Represents an optional keyword or partial keyword
that, if used, must be entered completely as
shown.

underlined lowercase Represents a value that you supply.

← Points to the default in a list of choices.

lowercase bold

Represents a portion of the syntax shown in
greater detail at the end of the syntax or elsewhere
in the document.

��────────────────────── Shows the beginning of a complete piece of
syntax.

──────────────────────�� Shows the end of a complete piece of syntax.

──────────────────────� Shows that the syntax continues on the next line.

�────────────────────── Shows that the syntax continues on this line.

──────────────────────�─ Shows that the parameter continues on the next
line.

─�────────────────────── Shows that a parameter continues on this line.

�── parameter ─────────� Shows a required parameter.

 �─┬─ parameter ─┬─────�

└─ parameter ─┘
Shows a choice of required parameters. You must
select one.

 �─┬─────────────┬─────�

└─ parameter ─┘
Shows an optional parameter.

 �─┬─────────────┬─────�

├─ parameter ─┤

└─ parameter ─┘

Shows a choice of optional parameters. Select
one or none.

 ┌─────────────┐

 �─(─ parameter ─┴─────�
Shows that you can repeat the parameter or
specify more than one parameter.

┌───── , ─────┐

 �─(─ parameter ─┴─────�
Shows that you must enter a comma between
repetitions of the parameter.

viii CA-IDMS Online Debugger

Sample syntax diagram

How to use this manual ix

x CA-IDMS Online Debugger

 Chapter 1. Introduction

1.1 About the debugger . 1-3
1.2 Debugger features . 1-4
1.3 Debugging process . 1-6

1.3.1 Prompt mode . 1-6
1.3.2 Menu mode . 1-8
1.3.3 Setup phase . 1-11
1.3.4 Runtime phase . 1-11

1.4 Session considerations . 1-13
1.4.1 Performance standards . 1-13
1.4.2 Valid breakpoints . 1-14
1.4.3 Program currency . 1-14

Chapter 1. Introduction 1-1

1-2 CA-IDMS Online Debugger

1.1 About the debugger

1.1 About the debugger

What you can debug: The CA-IDMS online debugger is an interactive facility
used to detect, trace, and resolve programming errors in programs that run under the
control of CA-IDMS/DC and CA-IDMS/UCF. The debugger can be used with these
load modules:

■ Assembler, COBOL, and PL/I programs

 ■ CA-ADS

 ■ Subschemas

 ■ Maps

 ■ Tables

�� For more information on using the debugger with Assembler, COBOL, and PL/I
programs, see Chapter 5, “Aids for Debugging Assembler, COBOL, and PL/I
Programs” on page 5-1.

How you use the debugger: You use the online debugger to:

■ Receive control when an abend occurs

The online debugger receives control when your program abends (for example,
with a data exception). You can then determine the abending instruction and
examine program variable storage to determine the error.

■ Receive control at predetermined breakpoints

In order to trap logic errors, you set breakpoints that halt program execution at a
specified line number. The online debugger receives control when your program
reaches that line number, so that you can examine program variable storage.

Chapter contents: This introductory chapter discusses:

 ■ Debugger features

■ Debugging in prompt or menu mode

■ Setup and runtime phases of a debugger session

■ Factors to consider when establishing a debugger session

Chapter 1. Introduction 1-3

1.2 Debugger features

 1.2 Debugger features

High level of control: The online debugger allows you to maintain a high level of
control over the debugging process. With the debugger, you can:

 ■ Set breakpoints

■ Display the contents of registers and storage

■ Modify storage values

■ Snap tasks and storage areas to the log

■ Trap abends in the module being debugged

Each of these functions is discussed below.

Setting breakpoints: Breakpoints are temporary program interruptions that you
can set at any address within a program or dialog that complies with debugger vali-
dation rules, as described in "Valid Breakpoints" later in this chapter.

At runtime, the debugger takes control at these breakpoints, and program execution is
temporarily suspended. While execution is suspended, you can perform a variety of
activities before returning control to the DC/UCF system or resuming execution of the
program.

Displaying and modifying storage values: You can examine storage values in
any area, assuming that you have the security necessary to access the area. (Tradi-
tional error-handling routines and dumps supply information only after an error occurs
or a program finishes executing.)

You can modify storage values and then execute the program to test the modifications.

The ability to examine and modify storage values in any area makes the debugger a
very powerful tool.

Therefore, it's important to use debugger security to control access to storage.

�� For information on the security methods used by the debugger, see CA-IDMS Secu-
rity Administration.

Snapping tasks and storage areas: You can create dumps for a task or for a
specific area; the dumps are written to the DC/UCF log. From the log you can make a
hard copy of storage contents and then examine them at your leisure.

Trapping abends: The debugger automatically takes control when an instruction
causes an abend in the module being debugged, allowing you to examine storage and
to take appropriate action.

1-4 CA-IDMS Online Debugger

1.2 Debugger features

Managing program execution: The debugger also provides you with a flexible
tool for managing an executing program. Under the control of the debugger during
runtime:

■ After a breakpoint, you can:

– Allow the program to resume execution from the current breakpoint address

– Specify resumption at an address before or after the breakpoint

■ After an abend, you can:

– Allow standard abend processing to continue

– Resume program execution at an address before or after the abend

■ In both cases, you can modify previous debugger commands or issue new com-
mands, for example to:

– Ignore all remaining breakpoints

– Bypass specific breakpoints

– Set additional breakpoints for the duration of a session

Chapter 1. Introduction 1-5

1.3 Debugging process

 1.3 Debugging process

What to define: You cannot debug an Assembler, COBOL, or PL/I program until
you define it to the DC/UCF system. For example, you cannot debug a program until
it is defined in the PROGRAM statement at system generation time or defined dynam-
ically with the DCMT VARY DYNAMIC PROGRAM statement.

Similarly, you must define the program task code either in the TASK statement at
system generation or dynamically with the DCMT VARY DYNAMIC TASK state-
ment.

Important: You don't have to define the task code for the initial stage of the debug-
ging process, but you must define it before executing the program.

You don't have to define CA-ADS dialogs, subschemas, maps, and tables.

Debugger structure: You can conduct a debugger session in one of two modes or
a combination of both:

■ Prompt mode enables you to issue debugger commands line by line

■ Menu mode enables you to issue commands from a series of activity and tutorial
screens

Debugging a module takes place in two phases:

■ The setup phase, invoked before a program is executed

■ The runtime phase, occurring during program execution and dependent on actions
taken during setup

DEBUG and QUIT: A debugger session begins when you issue the first DEBUG
task code. A session ends when you either issue the debugger QUIT command or
terminate the DC/UCF session by signing off.

Debugger session modes and phases are discussed in detail below.

 1.3.1 Prompt mode

Line-oriented method: Prompt mode is the line-oriented method of communicating
with the debugger. In prompt mode you can:

■ Initiate a debugging session

■ Issue a debugger command

■ Return to the DC/UCF system

Initiating a debugging session: To initiate a debugging session in prompt mode,
enter the DEBUG task code in response to the Enter Next Task Code prompt:

ENTER NEXT TASK CODE:

debug

1-6 CA-IDMS Online Debugger

1.3 Debugging process

The debugger indicates that it is in control by responding with its special prompt:

DEBUG >

Issuing a debugger command: You can issue debugger commands whenever the
debugger responds with the DEBUG> prompt. To issue a debugger command at the
same time you initiate a debugging session, enter the task code in conjunction with
the DEBUG command that names the entity to be debugged. In this example, the task
code DEBUG is followed by a DEBUG command that identifies TESTPROG to the
debugger:

ENTER NEXT TASK CODE:

debug debug testprog

When you enter the above command, you invoke the debugging facility. The
command is echoed, and the debugger responds by validating the command and dis-
playing the next DEBUG> prompt:

DEBUG TESTPROG

DEBUG > DEBUGGING INITIATED FOR TESTPROG VERSION 1

DEBUG >

If you try to debug a program which has not been defined to a DC/UCF system, the
debugger issues an error message after echoing the command, then repeats the
command that cannot be completed, and redisplays the DEBUG> prompt, as in this
example:

DEBUG TESTPROG

DC5749<2 DEBUG > LOAD OF TESTPROG FAILED - NOT FOUND

DEBUG > DEBUG TESTPROG

DEBUG >

Difference between EXIT and QUIT: To return control to the DC/UCF system,
issue either the EXIT command or the QUIT command.

The EXIT command saves the debugger control blocks and allows you to continue
the same debugger session.

The QUIT command clears the control blocks and terminates the debugger session
completely.

How to check session activity: To determine whether a debugger session exists,
issue the command DCMT DISPLAY LTE *. This command lists information about
your logical terminal. If you see DEBUG ACT, a debugger session is active; if you
see DEBUG INACT, no debugger session is active.

To inquire for a list of modules known to the debugger, use the DEBUG INQUIRE
command (see Chapter 3, “Debugger Commands” on page 3-1).

Valid commands: In prompt mode, you can use all commands except RESUME,
IOUSER, and WHERE during setup, and all commands except DEBUG during
runtime. The PROMPT command performs no function while you are in prompt
mode.

Chapter 1. Introduction 1-7

1.3 Debugging process

�� For a detailed discussion of the debugger commands, see Chapter 3, “Debugger
Commands” on page 3-1.

 1.3.2 Menu mode

Choosing activities from screens: Menu mode is designed to make your options
easy to see. You can enter commands or display information by filling in the fields on
a series of fixed-format screens:

■ Activity screens provide fields for commands that require additional input

■ Individual help screens provide detailed descriptions of each command

■ The Usage global help screen summarizes debugging activities

■ Two other global help screens let you display program and debugger symbols and
program function key (PF-key) assignments

�� For a complete description of each of the screens, see Chapter 4, “Debugging in
Menu Mode” on page 4-1.

Initiating a debugger session: To initiate a debugging session in menu mode,
issue the DEBUG task code followed by the MENU command in response to the Enter
Next Task Code prompt:

ENTER NEXT TASK CODE:

debug menu

When you enter this command, you see the Usage screen, which is the top-level menu
screen:

? @
IDMS-DC REL 15.< ONLINE DEBUGGER CCC USAGE CCC SETUP PAGE 1 OF 4

 PROGRAM: V: CSECT:

 ->

 PROCEDURAL COMMANDS.

EXIT.....RETURNS CONTROL TO IDMS-DC/UCF WITHOUT TERMINATING THE CURRENT DEBUGGER

 SESSION.

QUIT.....TERMINATES THE DEBUGGER SESSION AND RETURNS CONTROL TO IDMS-DC/UCF.

PROMPT...INVOKES THE PROMPT MODE OF THE DEBUGGER.

 RETRIEVAL COMMANDS.

AT.......ESTABLISHES OR MODIFIES BREAKPOINTS WITHIN A USER PROGRAM.

DEBUG....DESIGNATES, DURING THE SETUP PHASE, THE ENTITY TO BE DEBUGGED OR

INQUIRES ABOUT ENTITIES KNOWN TO THE DEBUGGER.

IOUSER...DISPLAYS THE USER SCREEN THAT IS CURRENT WHEN A BREAKPOINT, PROGRAM

INTERRUPT OR TRAPPED ABEND IS ENCOUNTERED.

NEXT _ ACTIVITY OR _ HELP:

 _ AT _ LIST _ SET _ SNAP _ RESUME _ DEBUG _ WHERE

 _ EXIT _ PROMPT _ QUIT _ IOUSER

 HELP SCREENS: _ USAGE _ SYMBOLS _ KEYS

I J

1-8 CA-IDMS Online Debugger

1.3 Debugging process

Switching mode: To switch from prompt mode to menu mode, issue the MENU
command in response to the DEBUG> prompt:

DEBUG >

menu

Now you also see the Usage screen.

Going to a specific screen: To go to a specific activity screen or global help
screen, issue the MENU command followed by a valid screen name. This example
illustrates the use of the DEBUG task code with a MENU command that names the
screen to be displayed:

ENTER NEXT TASK CODE:

debug menu at

When you enter the above command, you invoke the debugging facility in menu mode
and see the At command activity screen:

? @
IDMS-DC REL 15.< ONLINE DEBUGGER CCC AT CCC SETUP PAGE 1 OF 1

 PROGRAM: V: CSECT:

 ->

ADD BREAKPOINT AT:

 BEFORE: MAX AFTER: < EVERY: 1

 OTHER ACTION.......: (I-INQUIRE/D-DELETE/G-IGNORE)

BREAKPOINT OR <ALL>:

NEXT _ ACTIVITY OR _ HELP:

 _ AT _ LIST _ SET _ SNAP _ RESUME _ DEBUG _ WHERE

 _ EXIT _ PROMPT _ QUIT _ IOUSER

 HELP SCREENS: _ USAGE _ SYMBOLS _ KEYS

I J

Valid commands: Menu mode allows the same set of debugger commands as
prompt mode, with the exception that the PROMPT command is allowed and the
MENU command is disabled.

Leaving menu mode: To leave menu mode you can:

■ Select the PROMPT activity

■ Return to prompt mode with the associated control key

■ Enter the PROMPT command on the menu DEBUG> prompt line

Note: If you leave menu mode with an EXIT command or with the CLEAR control
key, the debugger remains in menu mode. Subsequently, when control returns

Chapter 1. Introduction 1-9

1.3 Debugging process

to the debugger, the debugger is still in menu mode. The debugger remains in
menu mode until you issue the PROMPT command.

�� For a more detailed discussion of menu mode, see Chapter 4, “Debugging in Menu
Mode” on page 4-1.

1-10 CA-IDMS Online Debugger

1.3 Debugging process

 1.3.3 Setup phase

Breakpoints and abends: The setup phase is the preliminary phase of the debug-
ging process. During this stage, you can define modules to the debugger for two
reasons:

■ To enable the setting of breakpoints

Breakpoints can be established as soon as the DEBUG command is used to define
the load module to the debugger.

■ To gain control under the debugger when a program check or abend occurs

The setting of breakpoints is not mandatory; you can trap possible abends in a
program during runtime and receive control under the debugger if:

– You have defined the program to the debugger (that is, issued a DEBUG
command for the program during the setup phase)

– You have defined the current DC/UCF program to the debugger

The last program to receive control through a #LINK or #XCTL is called the
current DC/UCF program. When a program check occurs in a module
unknown to the debugger, you will gain control under the debugger if the
current DC/UCF program is defined to the debugger.

�� For a detailed discussion of DC/UCF and debugger methods of assigning currency,
see 1.4.3, “Program currency” on page 1-14.

 1.3.4 Runtime phase

DEBUG and EXIT required: The runtime phase of the debugging process takes
place during the execution of a program. Debugging cannot occur during runtime
unless:

■ You have used the DEBUG command during the setup phase to define the
program to the debugger

■ You have used the EXIT command, which retains the debugger control blocks,
when leaving the setup phase

What happens at the breakpoint: When you have defined a program to the
debugger, the program task code invokes both the runtime phase of the debugger and
the execution of the program. At a breakpoint, the DC/UCF runtime system suspends
program execution, and you gain control under the debugger. A message is displayed
that signals the breakpoint interrupt and describes its location.

Three breakpoint display formats: For example, assume that a program called
TESTPROG is defined to the debugger and a breakpoint is established like this during
the setup phase:

DEBUG >

at @<<bf<8<

Chapter 1. Introduction 1-11

1.3 Debugging process

The debugger verifies the establishment of the breakpoint:

AT @<<BF<8<

AT > @<<BF<8< ADDED

DEBUG >

When this breakpoint is encountered during runtime, the debugger identifies the
address, the program, and the debug expression that established the breakpoint:

AT OFFSET @8< IN TESTPROG EXPRESSION @<<BF<8<

DEBUG >

In response to the DEBUG> prompt, you can make additional queries or perform other
debugging activities.

1-12 CA-IDMS Online Debugger

1.4 Session considerations

 1.4 Session considerations

Three factors: You'll need to consider the following factors when you establish and
conduct debugger sessions:

 ■ Performance standards

 ■ Valid breakpoints

 ■ Program currency

Each of these topics is discussed below.

 1.4.1 Performance standards

All activities permissible: During a debugger session, you can perform any
activity related to DC/UCF, not just debugging. For a given session, there are no
restrictions on the number or kinds of entities debugged or on the length of the
session.

For example, within a single debugger session, you can successively:

■ Initiate a debugger setup phase

■ Leave the debugger setup phase to conduct an online PLOG session

■ Return to the setup phase to debug another program

■ Leave the debugger setup phase again to conduct an IDD session

■ Execute one of the programs you are debugging

Minimize unrelated work: When the DEBUG task code initiates a debugger
session, the DC/UCF system saves your current screen, whether or not the screen is
directly related to any modules being debugged. Consequently, the debugger incurs
some processing overhead each time the current screen changes. For best perform-
ance, therefore, keep work unrelated to the debugging process to a minimum.

Also, although the setup phase is pseudoconversational, the runtime phase is com-
pletely conversational, which ties up system resources. Even database resources are
tied up while the debugger has control.

In order to use resources most efficiently, therefore, always return control to DC/UCF
before you leave your terminal or attend to concerns other than debugging.

Chapter 1. Introduction 1-13

1.4 Session considerations

 1.4.2 Valid breakpoints

Verified by debugger: Program breakpoints, established with the AT command,
must be set at addresses that contain valid instructions or valid command elements
(CMEs for CA-ADS dialogs). If the address cannot be validated, the debugger dis-
plays a message to indicate that the breakpoint could not be set. A verifying message
is displayed when the address is valid.

CAUTION: The debugger checks for a valid operation code at each breakpoint that
is set; you are responsible for placing the breakpoint at an actual instruction. If a
breakpoint address resolves to an address offset that contains a valid operation code
but does not contain a valid instruction, the program could be altered with unpredict-
able results.

 1.4.3 Program currency

Determines abend trapping: When a task abends or when a program check
occurs, the setting of program currency determines whether or not the debugger traps
the abend and transfers control to you.

DC/UCF and debugger currency: The DC/UCF system assigns currency on the
basis of the most recent program to have been given control with #LINK or #XCTL
program control services.

The debugger assigns currency according to these rules:

■ If the address of the interrupt is contained in one of the programs defined to the
debugger, this program is assigned debugger currency, and you are given control
under the debugger

■ If the address is not found in a debugged program, the debugger checks the
current IDMS-DC/UCF program to see whether it has been defined to the
debugger:

– If the current DC/UCF program has been defined to the debugger, this
program is assigned debugger currency, and you gain control under the
debugger

– If the program has not been defined, no debugger currency is assigned, you
do not gain control under the debugger, and the standard DC/UCF abend
processing takes place

Sample program structure: The following examples illustrate how program cur-
rency can affect whether the DC/UCF system passes control to the debugger. Each of
the examples is based on the sample program structure:

1-14 CA-IDMS Online Debugger

1.4 Session considerations

Sample program structure for examples

Example 1: During the setup phase, you define Programs A, B, and C to the
debugger. When the program is executing, a program check occurs in Program B.

These currencies are now in effect:

■ The current DC/UCF program is Program A, the last program to have been given
control by #LINK or #XCTL

■ Debugger currency is assigned to Program B

You receive control under the debugger because Program B, one of the programs
defined to the debugger, contains the address of the interrupt.

Example 2: During the setup phase, you define Program A to the debugger. When
the program is executing, a program check occurs in Program B.

These currencies are now in effect:

■ The current DC/UCF program is Program A, the last program to have been given
control by #LINK or #XCTL

■ Debugger currency is assigned to Program A

You receive control under the debugger because the current DC/UCF program has also
been defined to the debugger.

Chapter 1. Introduction 1-15

1.4 Session considerations

Example 3: During the setup phase, you define Program C to the debugger. When
the program is executing, a program check occurs in Program B.

These currencies are now in effect:

■ The current DC/UCF program is Program A, the last program to have been given
control by #LINK or #XCTL

■ Debugger currency is not assigned, because the debugger cannot find the interrupt
address in a known program and the current DC/UCF program is not defined to
the debugger

You do not receive control under the debugger because no debugger currency can be
set. The program abends without an interruption from the debugger, and the system
issues a standard abend message.

Example 4: During the setup phase, you define Program A to the debugger. During
execution, Program B branches into unknown storage and a program check occurs.

These currencies are now in effect:

■ The current DC/UCF program is Program A, the last program to have been given
control by #LINK or #XCTL

■ Debugger currency is assigned to Program A

You receive control under the debugger because the current DC/UCF program has also
been defined to the debugger.

1-16 CA-IDMS Online Debugger

 Chapter 2. Command Considerations

2.1 About this chapter . 2-3
2.2 Expression components . 2-4

2.2.1 Debugger symbols . 2-4
2.2.2 User symbols . 2-6
2.2.3 Program symbols . 2-7

2.2.3.1 Data field names . 2-7
2.2.3.2 Line numbers . 2-8
2.2.3.3 Qualifying program symbols . 2-8

2.2.4 Expression operators . 2-9
2.3 Length attributes . 2-11

2.3.1 Expressions with data characteristics 2-11
2.3.2 Expressions without data characteristics 2-12

2.4 Parsing rules . 2-14
2.5 Command modification . 2-15
2.6 Delimiters . 2-16
2.7 Data values . 2-17
2.8 Command format . 2-18

Chapter 2. Command Considerations 2-1

2-2 CA-IDMS Online Debugger

2.1 About this chapter

2.1 About this chapter

When issuing debugger commands, you consider:

This chapter discusses each of these topics.

Expression components Variables that can be specified in a debug
expression

Length attributes Display lengths for expressions with and without
data characteristics

Parsing rules Debugger rules for processing command input

Command modification Rules for modifying commands

Delimiters Delimiters recognized by the debugger

Data values Numeric and string values recognized by the
debugger

Command format Guidelines used to format a debugger command

Chapter 2. Command Considerations 2-3

2.2 Expression components

 2.2 Expression components

Four basic components: The basic components of a debug expression are:

 ■ Debugger symbols

 ■ User symbols

 ■ Program symbols

 ■ Operators

Three ways to appear: When a debug expression is used in a command, the
expression can appear as:

■ A single debugger symbol, user symbol, program symbol, or integer

■ Multiple debugger symbols, user symbols, program symbols, and integers joined
by operators

■ Multiple expressions joined by operators

 2.2.1 Debugger symbols

Three categories: Debugger symbols can:

■ Designate general registers

■ Designate certain DC/UCF system entities

■ Point to specific addresses

General registers symbols: General registers include the registers used by the
program at the time of execution and the registers used by the DC/UCF system. The
program status word (PSW) and register definitions are always preceded by a colon (:)
and are specified by these symbols:

■ :PSW for the current program status word

■ :Rn for the user program register at the time of interrupt, where n represents the
number of the register and can have a value of 0 through 15

■ :REGS for all user program registers at the time of interrupt

■ :SRn for a DC/UCF system register at the time of interrupt, where n represents
the number of the register and can have a value of 0 through 15

■ :SREGS for all DC/UCF system registers at the time of interrupt

Important: A single debug expression can reference only one general register.

DC/UCF system symbols: Certain DC/UCF system symbols also function as
debugger entities, and you can refer to them during a debugging session. A colon (:)
must precede each symbol. These are the valid symbols:

2-4 CA-IDMS Online Debugger

2.2 Expression components

Important: A single debug expression can reference only one system entity.

Address symbols and markers: Three special characters can be used in
debugger expressions to address particular locations in a program or dialog:

Each type of location is described separately below.

Absolute address: The at sign (@) functions as the debugger marker that prefaces
an absolute address notation. An absolute address cannot exceed eight digits.

Syntax for the marker is shown below:

��─── @ hex-value ──��

In a debug expression, @hex-value can be used interchangeably with the address nota-
tion Xhex-value. For example, an absolute address could be represented as @2B90 or
X'002B90'; an offset value could be represented as +@C0 or +X'C0'.

�� For more information about the hexadecimal values recognized by the debugger,
see 2.7, “Data values” on page 2-17.

Load address: The dollar sign ($) functions as the debugger label that expresses
the load address of the current program. In a command that uses debug expressions,
the dollar sign ($) can be used by itself or in combination with other expression com-
ponents.

This example illustrates the use of the dollar sign ($) in an expression requesting a
display of the current CSECT address:

list $

:BAT Base address table for session

:CSA DC/UCF common storage area

:DLB Debug local block, control block required for debugging session

:LTE Current logical terminal element

:PTE Current physical terminal element

:TCE Current task control element

:VECT Vector table for debugger

Symbol Symbol name Designated location

@ At sign Absolute address

$ Dollar sign Load address

¢ Cent sign Address of current dialog process

Chapter 2. Command Considerations 2-5

2.2 Expression components

This example sets a breakpoint at an offset address 16 bytes from the load address:

at $ + @1<

Address of current dialog process: The cent sign (¢) functions as the
debugger label that expresses the address of the current dialog process. In a command
that uses debug expressions, the cent sign (¢) can be used by itself or in combination
with other expression components.

This example illustrates the use of the cent sign (¢) to request the load address of the
current dialog process:

list ¢

 2.2.2 User symbols

Additional work areas: User symbols identify storage areas set aside by the
debugger as additional work areas. Each user symbol must be prefaced by a colon (:).
The user symbols and their meanings are:

■ :DRn for a debugger general register, where n represents the number of the reg-
ister and can have a value of 0 through 15

■ :DREGS for all debugger registers

■ :H1 and :H2 for halfword 1 and halfword 2

■ :F1 and :F2 for fullword 1 and fullword 2

■ :UCHR for a 48-byte character area

You can also refer to specified sections of this area:

– :UC0, the first 16 bytes

– :UC16, the next 16 bytes

– :UC32, the last 16 bytes

Examples: The example below illustrates one way in which you can use the work
areas as a debugging aid. In this example, when the program being debugged has
reached a breakpoint and the debugger facility is in control, you can copy the current
values in program registers to registers in the debugger work area. For instance, to
save the contents of all 16 of the general registers of the program, issue this command:

set :dregs = :regs

To save the contents of a single register, copy the values currently in the user register
to a debugger register, with a command in this format:

set :dr1 = :r1

Later in the debugger session, the user register previously saved can be restored with
this command:

set :r1 = :dr1

2-6 CA-IDMS Online Debugger

2.2 Expression components

Contents remain for session: You can modify or refer to the values in these
registers at any time during a debugger session; debugger register contents remain only
for the duration of the current session.

�� For more detailed information on the use of the SET command, see Chapter 3,
“Debugger Commands” on page 3-1.

 2.2.3 Program symbols

Data field names and line numbers are two types of program symbols used as compo-
nents of debug expressions. Each of these components is discussed separately below,
followed by a discussion of how program symbols can be qualified.

2.2.3.1 Data field names

When debugging a dialog during runtime, you can reference a specific data field.

Syntax: This is a summary of syntax for the use of data field names:

��──── data-field-name ─┬──────────────────────┬──────────────────────────────��

├─ IN ─┬─ record-name ─┘

└─ OF ─┘

 Parameters

data-field-name
Specifies the data field to be displayed. The name must be enclosed in quotation
marks if it contains embedded delimiters. The data field name must be qualified
if it is not unique to the process.

IN/OF record-name
Specifies the name of the record associated with the data field being requested.
The record name must be enclosed in quotation marks if it contains embedded
delimiters.

��For a complete list of the delimiters used in debugger commands, see 2.6,
“Delimiters” on page 2-16.

You cannot list or set data fields during the setup phase of a debugger session. If you
try to, the debugger issues an error message, as in this example:

DEBUG >

list date

DC7<49<< LIST > DATE CANNOT BE RESOLVED

LIST DATE

DEBUG >

Chapter 2. Command Considerations 2-7

2.2 Expression components

 2.2.3.2 Line numbers

When debugging a dialog, you can use symbolic line numbers in a debug expression.

Syntax: This is a summary of syntax for the use of line numbers:

��──── # line-number ───�

 �─┬──┬───��

└─┬─ IN ─┬─┬─ current-process-name ───────────────────────────────────┬┘

└─ OF ─┘ └─ included-module-name ─┬────────────────────────────────┬┘

└─ OCCurrence occurrence-number ─┘

 Parameters

#line-number
Specifies the process line number referenced in the expression. The line number
can stand alone if it is unique to the current process.

current-process-name
Specifies what process currently being debugged contains the line number. The
process name must be enclosed in quotation marks if it contains delimiters. The
current process name is the default value.

included-module-name
Specifies the name of the included module called from the current process con-
taining the line number. The name of the included module must be enclosed in
quotation marks if it contains delimiters.

OCCurrence occurrence-number
Specifies the occurrence of the included module for modules included more than
once in the process.

2.2.3.3 Qualifying program symbols

You can also use program symbols to refer to a line in another process without reset-
ting the process currency.

Syntax: The syntax for temporary qualification is:

��─── process-name - . - program-symbol ──────────────────────────────────────��

 Parameters

process-name
Specifies the current process.

program-symbol
Specifies the program symbol used in this expression. The program symbol is a
line number or a data field name. You can further qualify the symbol with the OF
included-module-name-qa clause of a debug expression.

2-8 CA-IDMS Online Debugger

2.2 Expression components

Example 1: Assume that the dialog being debugged has three processes:
MIS-MAIN1 (the current process), MIS-MAIN2, and MIS-MAIN3. To set a break-
point at line 200 in MIS-MAIN2, you can use the QUALIFY command to reset the
currency to MIS-MAIN2 (QUALIFY PROCESS 'MIS-MAIN2' AT #200). However,
to establish a breakpoint at line 200 without resetting currency, you can issue this
command:

at 'mis-main2'.#2<<

Example 2: To set a breakpoint at line 150 in MIS-INC3, a module included by
MIS-MAIN3, you can qualify the line number without changing currency from the
MIS-MAIN1 process:

at 'mis-main3'.#15< of 'mis-inc3'

 2.2.4 Expression operators

Standard operators: The standard operators are:

You can use these operators in any command containing a debug expression.

Special operators: The percent sign (%) is a special operator that you can use for
indirect addressing. With indirect addressing, the address in the expression is not the
address of the operand itself, but a pointer to a storage area that contains the address
of the operand. When the percent sign precedes a valid debug expression, the content
of the expression is used as the address of the target value.

Examples: Assume that register 3 contains the value BF040. You ask for display
of the contents of register 3, like this:

list :r3

<<<BF<4< C..<. C

In this example, the command points to the contents of register 3 as the target value
for the display:

list %:r3

In response to the command above, the debugger locates the operand address (BF040)
in register 3 and lists the contents stored at BF040:

<<<BF<4< <<<<47F< C<28<<<< <<<<<<<< <<<<<<<< C...<............C

+ Addition

- Subtraction

* Multiplication

/ Division

Chapter 2. Command Considerations 2-9

2.2 Expression components

Now you ask for display of the contents found at 10C010, the address supplied in the
debug expression:

list reca +1<

<<1<C<1< <<<BF<<< <<<<<<<< <<<<<<<< <<<<<<<< C..<.............C

In the next example, the relative storage location points to the address of the effective
operand. The debugger responds by listing the contents of BF000, the operand address
found at RECA+10:

list %(reca+1<)

<<<BF<<< D1D6C8D5 4<E2D4C9 E3C8<<<< <<<<<<<< CJOHN SMITH......C

2-10 CA-IDMS Online Debugger

2.3 Length attributes

 2.3 Length attributes

The types of components used in an expression can determine the amount of informa-
tion displayed or modified by the debugger in response to your request. When deter-
mining the length of a display, the debugger distinguishes between expressions with
and expressions without associated data characteristics.

2.3.1 Expressions with data characteristics

When an expression component has associated data characteristics, the length of the
display depends on:

■ The length attribute of the symbol

■ The length attribute of the end symbol

■ The explicit length

Length attribute of the symbol: The length attribute of the symbol is used as the
default value.

For example, this command requests the display of register 1:

list :r1

The length attribute of a general register is four bytes. The debugger uses the register
attribute as the default value and issues the following display in response to the above
command:

<<<<<<<<

Length attribute of the end symbol: The length attribute of the end symbol in
an expression range delineates the end of the display. For example, this command
requests a display of register 1 through register 3:

list :r1 to :r3

The debugger responds with a display that includes the full four-byte length of register
3:

<<<<<<<< <<<<<<<1 <<<<<<<2

Explicit length: An explicit length overrides the display length implied by the data
characteristics of a symbol.

This table lists the length attributes of debugger symbols:

Chapter 2. Command Considerations 2-11

2.3 Length attributes

Entity Symbol Length Attribute

Single registers
:Rn

:SRn

:DRn
4 bytes

Register blocks
:REGS

:SREGS

:DREGS
64 bytes

Program status word :PSW 8 bytes

Halfwords
:H1

:H2 2 bytes

Fullwords
:F1

:F2 4 bytes

Line number #Line-n 12 bytes

Control blocks :BAT, :CSA, :DLB,
:LTE, :PTE, :TCE,
:VECT

Variable (depending on
length of block)

2.3.2 Expressions without data characteristics

As soon as a component appears in an expression with any other component, it no
longer has associated data characteristics. For example, :PTE is an expression with an
implicit length attribute equal to the length of the control block, but :PTE +@10 is an
expression without associated data characteristics.

Ways to determine length: When an expression component does not have associ-
ated data characteristics, the length of the display is based on:

■ The default length of the command

■ An explicit length

■ The first byte of the end expression

Default command length: Default lengths vary for commands that use length
parameters. For example, the default length is 16 bytes for the LIST command and
256 bytes for the SNAP command.

In this example, the display begins 32 bytes from the start of the current physical
terminal element (PTE) for a length of 16 bytes:

list :pte +@2<

Explicit length: You can supply an explicit length, which overrides the default
length of the command. This example requests a 100-byte display that begins at the
load address:

list $ 1<<

The next example requests that the display begin at an offset address for a length of 20
bytes:

list :pte +@1< len 2<

2-12 CA-IDMS Online Debugger

2.3 Length attributes

First byte of the end expression: The first byte of the end expression in an
expression range specifies the end of the display. For example, the debugger displays
17 bytes of memory in response to this command:

list @bf<<< to @bf<1<

Chapter 2. Command Considerations 2-13

2.4 Parsing rules

 2.4 Parsing rules

Parameter order: The parameters of a command must appear in the order speci-
fied in the syntax.

In the display below, the first example is incorrect, because the BEFORE parameter
cannot follow the AFTER parameter in an AT command:

at $ +@1< after 2 before 1< on ←incorrect order

at $ +@1< before 1< after 2 on ←correct order

Errors that stop execution: If one command in a string of debugger commands
contains a syntax error, all following commands are parsed for syntax but not exe-
cuted.

The command containing the syntax error may be partly executed. In the first
example above, the part of the command preceding the error (at $ +@10 after 2) will
be executed:

DEBUG >

at $ +@1< after 2 before 1< on

AT $ +@1< ADDED

BEFORE 1< IGNORED

$

UNRECOGNIZABLE DEBUG COMMAND

DEBUG > AT $ +@1< AFTER 2 BEFORE 1< ON

DEBUG >

Commands that stop execution: If a RESUME, EXIT, IOUSER, MENU,
PROMPT, or QUIT command is embedded in a string of concatenated debugger com-
mands, all successive commands in the string are ignored.

2-14 CA-IDMS Online Debugger

2.5 Command modification

 2.5 Command modification

Rules of modification: Commands can be modified to specify different options or
to turn off options completely. You can modify commands with expressions corre-
sponding to the original command.

When you modify a command:

■ A respecified option overrides its counterpart in the previous command

■ All options specified in the previous command remain in effect unless overridden

Example: In this example these two commands

at $ + 8 before 1< ignore

at $ + 8 after 2 on

establish the breakpoint parameters specified in this display:

AT $ + 8 BEFORE 1< AFTER 2 ON

Chapter 2. Command Considerations 2-15

2.6 Delimiters

 2.6 Delimiters

 Valid delimiters

* Asterisk

Blank

, Comma

= Equal sign

! Exclamation point

- Hyphen

% Percent sign

. Period

+ Plus sign

/ Slash

2-16 CA-IDMS Online Debugger

2.7 Data values

 2.7 Data values

Valid data values: The debugger recognizes values supplied by the following types
of numbers and strings:

Value Description

Halfword values Two-byte fixed-point values ranging from +32,767 to
-32,768

Fullword values Four-byte fixed-point values ranging from
+2,147,483,647 to -2,147,483,648

Hexadecimal numbers Values of one to eight hexadecimal digits preceded by
an at (@) sign; can include characters A through F and
numerals 0 through 9; when not used in a debug
expression, contents must be paired hexadecimal digits

Decimal numbers Values that can include decimal positions

Character strings One- to 16-character alphanumeric values enclosed in
single or double quotation marks and preceded by letter
C (for example, C"F34"); can contain any printable
character or blank

Hexadecimal strings Even-numbered strings of up to 16 hexadecimal digits
enclosed in single or double quotation marks and pre-
ceded by letter X (for example, X"C6F4"); paired char-
acters A through F and paired numerals 0 through 9 for
hexadecimal values

Numeric strings Variable length numeric values enclosed in single or
double quotation marks; preceded by letter H, F, or P to
designate halfword values (H'0'), fullword values
(F'555'), or packed decimal values (P"2315")

Chapter 2. Command Considerations 2-17

2.8 Command format

 2.8 Command format

 Rules

■ One or more blanks must precede and follow all keywords

■ Spaces are optional within an expression

An offset value can be expressed with separating blanks or without blanks. For
example, the same command can be accurately formatted in any of these ways:

at @<<bf28< + 1<

at @<<bf28<+1<

at @<<bf28< +1<

■ The entire command string must not exceed twice the line length of the terminal

■ Multiple commands can be entered on one prompt line

The commands can be separated with an exclamation point (!) delimiter, but the
delimiter is not required. For example, the same command string can be accu-
rately formatted in any of these ways:

DEBUG >

at $ + 8 every 5 on!resume

DEBUG >

at $ + 8 every 5 on resume

DEBUG >

at $ + 8 every 5 on

AT > $ + 8 ADDED

DEBUG >

resume

2-18 CA-IDMS Online Debugger

 Chapter 3. Debugger Commands

3.1 Summary of commands . 3-3
3.2 AT . 3-4
3.3 DEBUG . 3-7
3.4 EXIT . 3-9
3.5 IOUSER . 3-10
3.6 LIST . 3-11
3.7 MENU . 3-14
3.8 PROMPT . 3-15
3.9 QUALIFY . 3-16
3.10 QUIT . 3-18
3.11 RESUME . 3-19
3.12 SET . 3-20
3.13 SNAP . 3-24
3.14 WHERE . 3-26

Chapter 3. Debugger Commands 3-1

3-2 CA-IDMS Online Debugger

3.1 Summary of commands

3.1 Summary of commands

This chapter presents a functional description, syntax, syntax rules and examples for
each debugger command you can use during the setup or runtime phases. The com-
mands are presented in alphabetical order.

This table summarizes the commands and their functions.

Command Description

AT Establishes or modifies breakpoints at specified locations in a user
program

DEBUG Designates an entity to be debugged or inquires about entities
known to the debugger

EXIT Returns control to the DC/UCF system, retaining the debugger
control blocks created in the current session

IOUSER Displays the screen current when a breakpoint, program check, or
trapped abend is encountered

LIST Displays session attributes, debugger variables, and areas of
memory at your terminal

MENU Invokes menu mode for a debugger session

PROMPT Invokes prompt mode for a debugger session

QUALIFY Assigns currency to a new process within the current dialog or
inquires about program, dialog and process currencies in effect

QUIT Terminates the debugger session and returns control to the
DC/UCF system, clearing all control blocks created in the current
debugger session

RESUME Continues program or abend execution

SET Allows you to modify storage and debugger session attributes

SNAP Allows you to create and write a dump to the DC/UCF log

WHERE Provides information about the last interrupt encountered in the
entity being debugged

Chapter 3. Debugger Commands 3-3

3.2 AT

 3.2 AT

Purpose: Sets, modifies, removes, or reviews breakpoints in a program.

 Syntax

 ADD format

��─── AT debug-expression ──�

 �─┬───────────────────────────────┬─┬──────────────────────────────┬─────────�

└─ BEFore ─┬─ MAXimum ← ───────┬┘ └─ AFTer ─┬─ < ← ─────────────┬┘

└─ execution-count ─┘ └─ execution-count ─┘

 �─┬──────────────────────────────┬─┬──────────┬──────────────────────────────��

└─ EVEry ─┬─ 1 ← ─────────────┬┘ ├─ ON ← ───┤

└─ execution-count ─┘ └─ IGNore ─┘

 INQUIRE format

��─── AT ─┬─ ALL ──────────────┬─┬─ INQuire ─┬────────────────────────────────��

└─ debug-expression ─┘ ├─ ON ──────┤

├─ IGNore ──┤

└─ OFF ─────┘

 Parameters

debug-expression
Specifies a breakpoint location in a user program. Debug-expression can include
multiple debug expressions, and it resolves to an address containing a valid
instruction or a valid CME (CA-ADS dialogs only). It is not valid to set a break-
point at the target of an Assembler execute (EX) instruction.

Tip: Debugger won't successfully resume if you set breakpoint at a "BALR
RX,0" type instruction or a "BAL RX,..." instruction later used as a base
register. An alternative is to set breakpoint at next instruction.

�� For more information on the values used in a debug expression, see 2.2,
“Expression components” on page 2-4 in Chapter 2, "Command Considerations."

ALL
Specifies that the action should apply to all previously established breakpoints.
Can be used only in INQUIRE format.

BEFore MAXimum
Causes the debugger to pause each time the breakpoint instruction is reached.
MAXIMUM is the default.

BEFore execution-count
Specifies an execution pause every time the specified breakpoint instruction is
encountered, up to but not including execution-count.

AFTer 0
Causes the debugger to pause each time the breakpoint instruction is reached.
Zero is the default.

3-4 CA-IDMS Online Debugger

3.2 AT

AFTer execution-count
Specifies an execution pause each time the same breakpoint instruction is encount-
ered beyond execution-count.

EVEry 1
Causes the debugger to pause every time the breakpoint instruction is encountered.
One is the default.

EVEry execution-count
Specifies an execution pause each time the counter for the specified breakpoint
instruction reaches a multiple of execution-count.

ON
Sets a new breakpoint or resets the status of a breakpoint previously ignored. ON
is the default in ADD format.

IGNore
Bypasses the specified breakpoint but increments the breakpoint counter.

OFF
Removes the breakpoint. Can be used only in INQUIRE format.

INQuire
Requests a listing of the breakpoint locations and characteristics. Can be used
only in INQUIRE format.

 Usage

Two formats: The AT command has two formats. The ADD format is used to set
and modify breakpoints; the INQUIRE format is used to review breakpoint locations,
if any have been set, as well as to modify the breakpoints.

Temporary processing halt: A breakpoint temporarily halts processing, allowing
you to examine the results of execution up to the point of interruption. Processing is
halted before the instruction at the breakpoint is executed. You can use the AT
command in both the setup and the runtime phases of a debugger session.

Breakpoint count: In response to the INQUIRE format, the debugger displays all
parameters in effect for the named breakpoints and indicates the breakpoint count.
The breakpoint count (BKPT COUNT) shows how often the breakpoint has been
encountered from the time the program received control via #LINK or #XCTL.

If you issue an AT INQUIRE command is issued during the setup phase, the break-
point count documents the count from the most recently executed program. The
breakpoint counter is reset to zero each time a #LINK or #XCTL is processed for the
program.

Example 1: This command schedules program breaks on the second through ninth
time the instruction at the address $ + 8 is encountered.

DEBUG >

at $ + 8 before 1< after 1

Chapter 3. Debugger Commands 3-5

3.2 AT

The debugger verifies the breakpoint with this message:

AT> $ + 8 ADDED

Once the breakpoint in the example above has been set, the debugger displays the
following message in response to an AT $ + 8 INQUIRE command:

AT> AT $ + 8 BEFORE 1< AFTER 1 EVERY 1 BKPT COUNT < ON

In this example, the default value is indicated for the EVERY parameter. BKPT
COUNT 0 indicates that this breakpoint has not yet been encountered in the current
execution of the program.

Example 2: When a breakpoint is reached during the runtime phase, the debugger
displays a message that names the address, identifies the program, and displays the
debug expression that established the breakpoint. For example, the following message
would appear for a breakpoint established with an AT $ + 8 command for program
TESTPROG:

AT OFFSET @8 IN TESTPROG EXPRESSION $ + 8

Example 3: In CA-ADS dialogs you can set breakpoints by specifying a line
number:

DEBUG >

at #2<<

If line 200 is a valid address, the debugger responds to the above command as follows:

AT #2<<

AT> #2<< ADDED

Example 4: When debugging a dialog, you can set a breakpoint in a process other
than the current process without changing the currency. In the following example
where MIS-MAIN1 is the current process, a breakpoint is set at line 100 in a second
process (MIS-MAIN2); MIS-MAIN1 retains its currency. As usual, the debugger
sends a verifying message when the breakpoint address is valid.

DEBUG >

at 'mis-main2'.#1<<

AT 'MIS-MAIN2'.#1<<

AT> 'MIS-MAIN2'.#1<< ADDED

DEBUG >

In the above example, the programmer encloses the process name in single quotation
marks (') because the name contains an embedded hyphen (-). Quotation marks are
required for any name that contains embedded delimiters.

3-6 CA-IDMS Online Debugger

3.3 DEBUG

 3.3 DEBUG

Purpose: Specifies the programs to be debugged or inquires about the debugged
programs.

 Syntax

 ADD format

��─── DEBug ─┬─ PROgram ← ─┬─ entity-name ─┬──────────────────────────┬───────��

├─ DIAlog ─────┤ └─ VERsion version-number ─┘

├─ MAP ────────┤

├─ SS ─────────┤

└─ TABle ──────┘

 INQUIRE format

��─── DEBug ─┬─ entity-name ─┬──────────────────────────┬─┬─┬─ INQuire ─┬─────��

│ └─ VERsion version-number ─┘ │ └─ OFF ─────┘

└─ ALL ──────────────────────────────────────┘

 Parameters

PROgram/DIAlog/MAP/SS/TABle
Identifies the type of load module to be debugged. Used only in ADD format.
PROGRAM is the default.

entity-name
Specifies the name of the entity to be used by the debugger as the current load
module. Entity-name contains a maximum of eight characters.

ALL
Specifies all modules defined to the debugger during the current session. Can be
used only in INQUIRE format.

VERSION version-number
Identifies the version of the program being debugged.

If the version is not specified:

■ In ADD format, the debugger uses the version set with DCUF TEST, or
version 1 if DCUF TEST hasn't been issued

■ In INQUIRE format, the debugger displays all versions if none is specified

INQuire
Requests a listing of the modules being debugged in this session.

OFF
Terminates all debugging for the specified programs for the remainder of the
session.

Chapter 3. Debugger Commands 3-7

3.3 DEBUG

 Usage

Functions of DEBUG: The word DEBUG has several functions:

■ Task code used to initiate a debugging session

■ Prompt displayed during a debugging session in prompt mode

■ Command used during the setup phase to designate the programs to be debugged
or to inquire about the debugged programs

You can use the DEBUG command only during the setup phase.

Special copy loaded: When you issue the DEBUG command for a module, a
special copy is loaded, so that setting breakpoints and making data changes will not
affect other users.

Two formats: The DEBUG command has two formats. The ADD format initially
identifies the entities to be debugged; the INQUIRE format lists entities defined to the
debugger in a given session.

Example 1: This example illustrates the use of the DEBUG task code in conjunction
with the DEBUG command to transfer control from DC/UCF to the debugger and to
define a module to the debugger; the debugger verifies the commands and displays the
DEBUG> prompt in response:

ENTER NEXT TASK CODE:

debug debug testprog

DEBUG TESTPROG

DEBUG > DEBUGGING INITIATED FOR TESTPROG VERSION 1

DEBUG >

Example 2: In this example, the DEBUG command names the load module to be
debugged:

DEBUG >

debug dialog msgtext version 3

DEBUG DIALOG MSGTEXT VERSION 3

DEBUG > DEBUGGING INITIATED FOR MSGTEXT VERSION 3

DEBUG >

Example 3: This command requests a list of all programs defined to the debugger
during the current session:

DEBUG >

debug all inquire

DEBUG ALL INQUIRE

PROGRAM TESTPROG VERSION 1

DIALOG MSGTEXT VERSION 3 PROCESS MSG-MAIN1 CURRENT

DEBUG >

3-8 CA-IDMS Online Debugger

3.4 EXIT

 3.4 EXIT

Purpose: Returns control to DC/UCF and retains the debugger control blocks.

 Syntax

��─── EXIt ───��

Usage: Use EXIT to complete the setup phase and return to DC/UCF.

In a concatenated list of commands, the debugger ignores any command that follows
the EXIT command.

Important: In debugging a dialog, the EXIT command causes rollbacks to be issued
for both the database, if a run unit is open, and the task.

Examples: This example illustrates the use of the EXIT command and the resulting
system response:

DEBUG >

exit

EXIT

EXIT DEBUGGER

ENTER NEXT TASK CODE:

Chapter 3. Debugger Commands 3-9

3.5 IOUSER

 3.5 IOUSER

Purpose: Redisplays the screen that appeared at your terminal immediately before
the debugger processed the breakpoint or trapped abend.

 Syntax

��─── IOUser ───��

Usage: After the screen is redisplayed, you can return to the menu mode screen or
to the DEBUG> prompt by pressing any control key.

You can issue the IOUSER command only at runtime. In a concatenated list of com-
mands, the debugger ignores any command that follows the IOUSER command.

3-10 CA-IDMS Online Debugger

3.6 LIST

 3.6 LIST

Purpose: Displays selected areas of storage and session attributes at your terminal.

 Syntax

 MEMORY format

��─┬─ List ────┬─┬──────────┬─ begin-debug-expression ────────────────────────�

└─ Display ─┘ └─ Memory ─┘

 �─┬──────────────────────────────────┬──┬──────┬─────────────────────────────��

├─ TO end-debug-expression ────────┤ ├─ C ──┤

└─┬──────────┬─ byte-count-number ─┘ ├─ X ──┤

└─ LENgth ─┘ └─ XC ─┘

 ATTRIBUTES format

��─┬─ List ────┬─ SESsion ATTributes ───��

└─ Display ─┘

 Parameters

begin-debug-expression
Specifies the beginning location of the display. Begin-debug-expression can
include multiple debug expressions and it resolves to an address for which you
have retrieval security.

�� For information on the security methods used by the debugger, see CA-IDMS
Security Administration.

�� For more information on the values used in a debug expression, see 2.2,
“Expression components” on page 2-4 in Chapter 2, "Command Considerations."

end-debug-expression
Specifies the ending location of the display. End-debug-expression can include the
same debugger entities as those specified in begin-debug-expression. The
expression must resolve to a valid address for which you have retrieval security.

byte-count-number
Indicates the number of bytes to be displayed.

Important: If a resource is listed and the length or ending address exceeds the
resource boundary, the list is truncated at the boundary, and the debugger
issues a warning message.

C
Requests a display in character format.

X
Requests a display in hexadecimal format.

XC
Requests a display in both hexadecimal and character format.

 Usage

Chapter 3. Debugger Commands 3-11

3.6 LIST

Two formats: There are two formats for the LIST command. The MEMORY format
requests a display of the contents of memory; the ATTRIBUTES format requests a
display of session attributes.

Rules for default length: When neither end-debug-expression nor
byte-count-number is specified, the default length is based on these rules:

■ If the expression is composed of a single symbol, the data characteristics of the
symbol determine the default length. The number of bytes displayed is equal to
the default length of the symbol.

■ If the expression does not have data characteristics, the default length is 16 bytes.

Format specified for this command: XC/X/C specifies the format for the
requested information. This specification can override the type of display previously
established as a session attribute; the override is only valid for the duration of this
command. See the ATTRIBUTES format of the SET command to reestablish the
session attributes more permanently.

Example 1: This command requests a list of the storage contents beginning at
@BF002, for a length of 48 bytes:

list @bf<<2 48

The debugger responds with a display of the beginning address and the requested
storage contents:

<<<BF<<2 47F< C<28.... C...<............C

<<<BF<1< 585<9<<2 C................C

<<<BF<2< 478<C12A C..A.............C

<<<BF<3< 477< C.. C

The first line of the storage display is indented for a space of two bytes, reflecting the
exact beginning address.

Example 2: This command instructs the debugger to display the physical terminal
element (PTE) control block from the beginning to the end of the entity. The length
of the data field is determined by the data characteristics of the PTE.

list :pte

Example 3: The next command instructs the debugger to display storage contents
beginning at @BF020. Since this expression has no data characteristics, the display
defaults to 16 bytes.

list @bf<2<

Example 4: In debugging CA-ADS dialogs you can use a data field name:

list date

The debugger responds by displaying the requested information:

<<1C2C5< F8F4F<F3 F<F1 C84<3<1 C

3-12 CA-IDMS Online Debugger

3.6 LIST

Important: You cannot refer to data fields of Assembler, COBOL, or PL/I programs
by name.

Example 5: You can also use a line number:

list #1<<

Example 6: When field names or line numbers are not unique, you must qualify
them. This example lists line 100 from a process other than the current dialog
process:

list 'process-b'.#1<<

Example 7: This example qualifies a request by specifying the display of a field
name USERID-1301 from a record EMPLOYEE-1301:

list 'userid-13<1' in 'employee-13<1'

Example 8: This is an example of the ATTRIBUTES format:

DEBUG >

list session attributes

LIST SESSION ATTRIBUTES

LIST > SESSION ATTRIBUTES

 LIST: CHAR

TEST VERSION: 2

DEBUG >

This display indicates that DCUF TEST 2 and SET CHAR were issued.

Chapter 3. Debugger Commands 3-13

3.7 MENU

 3.7 MENU

Purpose: Switches the debugger session from prompt mode to menu mode.

 Syntax

��─── MENu ─┬───────────────┬───��

└─ screen-name ─┘

 Parameter

screen-name
Indicates the name of a global help screen or an activity screen to be displayed. If
screen-name is not specified, the debugger displays the Usage screen, the top-level
global help screen that presents a list of debugger commands and functions.

Usage: The MENU command is executed in prompt mode and switches the
debugger session from prompt mode to menu mode. MENU is disabled in menu
mode.

In a concatenated list of commands, the debugger ignores any command that follows
the MENU command.

Example: This command instructs the debugger to switch from prompt mode to
menu mode with the display of the activity screen for the LIST command:

DEBUG >

menu list

�� For a complete discussion of the screens available in menu mode, see Chapter 4,
“Debugging in Menu Mode” on page 4-1.

3-14 CA-IDMS Online Debugger

3.8 PROMPT

 3.8 PROMPT

Purpose: Switches the debugger session from menu mode to prompt mode.

 Syntax

��─── PROmpt ───��

Usage: The PROMPT command is executed in menu mode and switches the
debugger session from menu mode to prompt mode. PROMPT is disabled in prompt
mode.

In a concatenated list of commands, the debugger ignores any command that follows
the PROMPT command.

Chapter 3. Debugger Commands 3-15

3.9 QUALIFY

 3.9 QUALIFY

Purpose: Establishes a new current process or inquires about the current program,
or dialog and process.

 Syntax

 RESET format

��─── QUAlify ─┬──────────────────────┬─ PROCess process-name ────────────────�

└─ DIAlog dialog-name ─┘

 �─┬──────────────────────────┬───��

└─ VERsion version-number ─┘

 INQUIRE format

��─── QUAlify INQuire ──��

 Parameters

DIAlog dialog-name
Specifies the dialog currently defined to the debugger. Only current dialog can be
qualified.

PROCess process-name
Specifies the new dialog process to become current. Enclose the process name in
single quotation marks if the name contains embedded delimiters.

VERsion version-number
Specifies the version number of the current dialog.

 Usage

Resetting currency: When a dialog is defined to the debugger, the premap process
becomes the current process by default. You can use the QUALIFY command to
assign currency to a different process within the current dialog.

Two formats: The QUALIFY command has two formats. The RESET format resets
currency; the INQUIRE format requests a display of the current program, or the
current dialog and process.

The QUALIFY command can be used in both the setup and the runtime phases of a
debugger session.

3-16 CA-IDMS Online Debugger

3.9 QUALIFY

Example 1: You can inquire about the current dialog process:

DEBUG >

qualify inquire

The debugger responds in this format:

QUALIFY INQUIRE

DIALOG MISINDC VERSION 1 PROCESS MIS-MAIN1 CURRENT

DEBUG >

Example 2: These commands reassign currency to MIS-MAIN2 and set a breakpoint
at line 200 within MIS-MAIN2:

qualify proc 'mis-main2' at #2<<

The debugger responds like this:

QUALIFY PROCESS 'MIS-MAIN2'

QUALIFY > CURRENCY SET

AT #2<<

AT > #2<< ADDED

DEBUG >

Chapter 3. Debugger Commands 3-17

3.10 QUIT

 3.10 QUIT

Purpose: Terminates a debugger session and returns control to DC/UCF, clearing
the debugger control blocks.

 Syntax

��─── QUIt ───��

Usage: The QUIT command discontinues debugging and lets you enter a new task
code in response to the Enter Next Task Code prompt.

In a concatenated list of commands, the debugger ignores any commands that follow
the QUIT command.

Important: In debugging a dialog, the QUIT command causes rollbacks to be issued
for both the database, if a run unit is open, and the task.

Example: This is how the system responds to the QUIT command:

DEBUG >

quit

QUIT

QUIT DEBUGGER

ENTER NEXT TASK CODE:

3-18 CA-IDMS Online Debugger

3.11 RESUME

 3.11 RESUME

Purpose: Instructs the runtime system to continue program execution at the next
instruction or a specified location or to continue standard processing of an abend.

 Syntax

��─── RESume ─┬───────────────────────────────┬───────────────────────────────��

└┬──────┬─┬─ debug-expression ─┬┘

└─ AT ─┘ └─ ABEnd ────────────┘

 Parameters

debug-expression
Specifies the location at which execution is to continue, if other than the instruc-
tion immediately following the breakpoint. Debug-expression can include mul-
tiple debug expressions, and it resolves to an address containing a valid instruction
or a valid CME (CA-ADS dialogs only).

�� For more information about the values used in a debug expression, see 2.2,
“Expression components” on page 2-4 in Chapter 2, "Command Considerations."

ABEnd
Specifies that standard DC/UCF abend processing, including the execution of any
STAE set, should continue.

Usage: You can issue the RESUME command only at runtime.

When program execution resumes at an address other than the address of the instruc-
tion immediately following the breakpoint, you must be sure that the program environ-
ment (for example, the contents of registers and storage) is appropriate for running the
program.

Examples: This command requests that execution of the program resume with the
instruction at the breakpoint:

resume

This command requests that program execution resume at the load address:

resume $

Chapter 3. Debugger Commands 3-19

3.12 SET

 3.12 SET

Purpose: Modifies selected areas of storage and debugger symbols.

 Syntax

 MEMORY format

��─┬─ Set ──┬─┬──────────┬─ debug-expression ─┬──────────┬───────────────────�

└─ Vary ─┘ └─ Memory ─┘ ├─ EQUals ─┤

└─ = ──────┘

 �─┬─ data-field-name ────┬─┬──────┬─┬─────────────┬──────────────────────────��

├─ H halfword ─────────┤ ├─ C ──┤ ├─ RESEt ─────┤

├─ F fullword ─────────┤ ├─ X ──┤ └─ NOReset ← ─┘

├─ X hex-value ────────┤ └─ XC ─┘

├─ C character-string ─┤

└─ P packed-value ─────┘

 ATTRIBUTES format

��─── Set ─┬─ CHAr ─┬───��

├─ HEX ──┤

└─ BOTh ─┘

 Parameters

debug-expression
Specifies the beginning location of the entity to be modified. Debug-expression
can include multiple debug expressions, and it resolves to an address for which
you have update security.

�� For information on the security methods used by the debugger, see CA-IDMS
Security Administration.

�� For more information on the values used in a a debug expression, see 2.2,
“Expression components” on page 2-4 in Chapter 2, "Command Considerations."

data-field-name
Identifies a specific data field value. Can be used in CA-ADS dialogs only.

�� For a complete discussion of the use of field names, see 2.2.3, “Program
symbols” on page 2-7 in Chapter 2, "Command Considerations."

Hhalfword
Is a halfword number. H specifies the halfword format; halfword represents the
actual data content and must be enclosed in single quotation marks.

Ffullword
Is a fullword number. F specifies the fullword format; fullword represents the
actual data content and must be enclosed in single quotation marks.

Xhex-value
Is a hexadecimal string. X specifies the hexadecimal format; hex-value represents
the actual data content and must be enclosed in single quotation marks.

3-20 CA-IDMS Online Debugger

3.12 SET

Ccharacter-string
Is a character literal used to assign alphanumeric or symbolic character values. C
specifies the character format; character-string represents the actual data content
and must be enclosed in single quotation marks.

Ppacked-value
Is an assigned packed decimal value. P specifies the packed decimal format;
packed-value represents the actual data content and must be enclosed in single
quotation marks.

C
Requests a display in character format.

X
Requests a display in hexadecimal format.

XC
Requests a display in both hexadecimal and character format.

RESEt
Specifies that the named storage be reset to its original value at the end of the
debugging session. This option is not supported for release 10.2 of the debugger.

NOReset
Specifies that the storage is not to be reset to its original value at the end of the
debugging session. This option does not affect storage in the debugged program
itself since a special copy of the program is loaded for the debugging session.
NORESET is the default.

CHAr
Requests a display in character format for ATTRIBUTES format.

HEX
Requests a display in hexadecimal format for ATTRIBUTES format.

BOTh
Requests a display in both hexadecimal and character format for ATTRIBUTES
format.

 Usage

Two formats: The SET command has two formats. The MEMORY format specifies
the values assigned to a given debug expression; the ATTRIBUTES format specifies
the debugger session attributes to be established.

When debug expression is a symbol with data characteristics (for example, :REGS),
the length of the symbol is used in the set. When the expression does not have data
characteristics (for example, $ + 10), the data characteristics of the source field are
used in the set.

Important: The debugger does not allow a set across resource boundaries.

Chapter 3. Debugger Commands 3-21

3.12 SET

Character and hexadecimal format: C/X/XC in the MEMORY format specifies
how the information is to be listed. This specification can override the session attri-
butes previously established for the session; the override is valid only for the duration
of this command. To reestablish the session attributes more permanently use the
ATTRIBUTES format.

Example 1: This command modifies the contents of a program register:

DEBUG >

set :r7 x'<<<<<<<1' x

The debugger responds to the X parameter with the hexadecimal display of the original
value and the reset value:

SET :R7 X'<<<<<<<1' X

OLD

<<<<<<<<

NEW

<<<<<<<1

DEBUG >

Example 2: This command modifies storage at an offset address:

DEBUG >

set $ + 8 = x'58' x

The debugger responds:

SET $ + 8 = X'58' X

OLD

<<<BF<<8 41

NEW

<<<BF<<8 58

DEBUG >

Example 3: This command modifies storage at the same address with a fullword
value:

DEBUG >

set $ + 8 equ f'58' x

The debugger responds:

SET $ + 8 EQU F'58' X

OLD

<<<BF<<8 413<C<5<

NEW

<<<BF<<8 <<<<<<3A

DEBUG >

3-22 CA-IDMS Online Debugger

3.12 SET

Example 4: This is an example of the ATTRIBUTES format:

DEBUG >

set char

SET CHAR

SET ATTRIBUTE CHAR

DEBUG >

Chapter 3. Debugger Commands 3-23

3.13 SNAP

 3.13 SNAP

Purpose: Allows you to create a dump and write it to the DC/UCF log.

 Syntax

��─── SNAp ─┬─ TASk ──┬───�

└─ begin-debug-expression ─┬─────────────────────────────────┬┘

├─ TO end-debug-expression ───────┤

└┬──────────┬─ byte-count-number ─┘

└─ LENgth ─┘

 �─┬───────────────┬──��

└─ TITle title ─┘

 Parameters

TASk
Requests a dump of all resources associated with the executing task, as well as the
Task Control Element (TCE) and the Dispatch Control Element (DCE).

begin-debug-expression
Specifies the location at which to begin the snap. Begin-debug-expression can
include multiple debug expressions, and it resolves to an address for which you
have retrieval security.

�� For information on the security methods used by the debugger, see CA-IDMS
Security Administration.

�� For more information on the values used in a debug expression, see 2.2,
“Expression components” on page 2-4 in Chapter 2, "Command Considerations."

end-debug-expression
Specifies the ending location of the display. End-debug-expression can include the
same debugger entities as those specified in begin-debug-expression. The
expression must resolve to a valid address for which you have retrieval security.

byte-count-number
Specifies the number of bytes to be displayed.

TITle title
Specifies an optional title for the snap. The title must be enclosed in single quota-
tion marks ('), may not exceed 32 characters, and must be prefaced by a valid
ASA carriage control character. These are the valid carriage control characters:

 (Space bar) Space one line

0 Space two lines

- Space three lines

1 Skip to the top of the next page

3-24 CA-IDMS Online Debugger

3.13 SNAP

The length of 32 characters includes the carriage control character. Code apostro-
phes in the title as two single quotation marks (''). They are counted as one char-
acter position.

When a title is not specified, a default title is written to the log.

 Usage

Types and timing: You can use a SNAP command for a Task snap or a snap of
specific area; the command is valid at any point in a debugger session.

You can examine the Snap dumps online with OLP (OnLine Plog), or make a hard
copy by running the print log functions of the Batch Command Facility utility.

�� For more information see CA-IDMS Utilities.

Default length: When neither end-debug-expression nor byte-count-n is specified,
the default length is based on these rules:

■ If the expression is composed of a single symbol, the data characteristics of the
symbol determine the default length. The number of bytes dumped is equal to the
default length of the symbol.

■ If the expression does not have data characteristics, the default length is 256 bytes.

Example 1: This command causes a snap to begin at the load address and terminate
at @000BF050; the default title is to be used:

DEBUG >

snap $ to @bf<5<

The default title takes the form:

SNAP command-entered USER user-id

For example, if the user ID is MMC, the default title is:

SNAP $ TO @<<<BF<5< USER MMC

Example 2: This command requests a snap starting at the load address for 256
bytes; the default title is to be used:

DEBUG >

snap $

Example 3: This command requests a task snap; the title IDMSTEST, positioned at
the top of a display page, will be used for the dump:

DEBUG >

snap task title '1idmstest'

Chapter 3. Debugger Commands 3-25

3.14 WHERE

 3.14 WHERE

Purpose: Provides information about the last interrupt of the entity being debugged.

 Syntax

��─── WHEre ──��

Usage: You can issue the WHERE command only at runtime.

Example: This is how the debugger responds to the WHERE command:

DEBUG >

where

WHERE > @<<<BF<1< LAST INTERRUPT MESSAGE FOLLOWS

AT OFFSET @1< IN TSTPROG EXPRESSION $ + @1<

3-26 CA-IDMS Online Debugger

Chapter 4. Debugging in Menu Mode

4.1 Features of menu mode . 4-3
4.2 Screen design . 4-4

4.2.1 Heading area . 4-4
4.2.2 Display area . 4-7
4.2.3 Specification area . 4-7
4.2.4 Selection area . 4-7

4.3 Accessing screens . 4-9
4.3.1 Screen hierarchy . 4-9
4.3.2 Screen sequence . 4-10
4.3.3 Selection processing . 4-10
4.3.4 Command currency . 4-11

4.4 Activity screens . 4-12
4.4.1 At screen . 4-12
4.4.2 Debug screen . 4-13
4.4.3 List screen . 4-14
4.4.4 Resume screen . 4-15
4.4.5 Set screen . 4-16
4.4.6 Snap screen . 4-17

4.5 Global help screens . 4-19
4.5.1 Usage screen . 4-19
4.5.2 Symbols screen . 4-19
4.5.3 Keys screen . 4-20

Chapter 4. Debugging in Menu Mode 4-1

4-2 CA-IDMS Online Debugger

4.1 Features of menu mode

4.1 Features of menu mode

Menu mode facilities: Menu mode provides screens that allow you to choose any
of the debugging activities that can be performed in prompt mode. Fixed-format
activity screens are available for each command to simplify the process of debugging.
Menu mode also offers several help facilities.

Chapter contents: This chapter discusses the following features of menu mode:

■ Screen design — Standard format of the activity and help screens

■ Accessing screens — Moving between screens

■ Activity screens — Descriptions of the variable fields on the command-specific
activity screens

■ Global help screens — Descriptions of the global help screens

Chapter 4. Debugging in Menu Mode 4-3

4.2 Screen design

 4.2 Screen design

Screen areas: The menu mode screens are designed for ease of use. Each screen
has a:

 ■ Heading area

 ■ Display area

 ■ Specification area

 ■ Selection area

This diagram shows the areas of the screen:

? @
IDMS-DC REL 15.< ONLINE DEBUGGER CCC LIST CCC SETUP PAGE 1 OF 1

 PROGRAM: V: CSECT:

 ->

LIST: M (M-MEMORY/A-ATTRIBUTES)

 MEMORY ONLY:

BEGIN LIST AT:

LENGTH.......: - OR - END LIST AT:

LIST FORMAT..: B (C-CHARACTER/X-HEX/B-BOTH)

NEXT _ ACTIVITY OR _ HELP:

 _ AT _ LIST _ SET _ SNAP _ RESUME _ DEBUG _ WHERE

 _ EXIT _ PROMPT _ QUIT _ IOUSER

 HELP SCREENS: _ USAGE _ SYMBOLS _ KEYS

I J

Each of the screen areas is described below.

 4.2.1 Heading area

Contents: The heading area includes three lines:

 ■ Header line

 ■ Currency line

 ■ Prompt line

Header line: The header line contains several fields:

■ The PF-key field provides a two-position entry area for simulation of a program-
function key. For example, typing a 5 in this field and pressing [Enter] has the
same effect as pressing [PF5].

4-4 CA-IDMS Online Debugger

4.2 Screen design

The simulated PF-key field is useful when your terminal does not have program-
function keys. You can specify the numerals 1 through 24, as well as EN for
[Enter], CL for [Clear], P1 for [PA1], and P2 for [PA2].

■ Product name and release number fields supply information formatted like this:

IDMS-DC REL n.n ONLINE DEBUGGER

■ The screen label field indicates the name of the current screen. The screen name
changes as you move from one activity or help screen to another in the debugging
process. (The sample screen is the List screen.)

■ The session mode field indicates whether you are in the setup or runtime phase of
the debugging process. (The sample screen indicates a setup phase.)

■ Page notations supply the current page and the total number of pages available
for the given display. The sample screen indicates that you are viewing the first
page of a one-page display. Typically the help screens have more than one page.
You can display a different page by:

– Overwriting the current page number on the header line and pressing [Enter]

– Using the designated control key to scroll backward or forward.

Default control key assignments This table presents a list of the default control
key assignments for the debugger:

Key Action Description Function

[PF1] Usage Displays the Usage screen 2

[PF2] Unassigned 5

[PF3] Activity Displays the activity screen for
the current command

3

[PF4] Help Displays the help screen for the
current command

4

[PF5] Symbols Displays the Symbols screen 9

[PF6] Keys Displays the default control key
assignments

6

[PF7] Scroll up Displays the previous page 7

[PF8] Scroll down Displays the next page 8

[PF9] Prompt Returns the debugger to prompt
mode

1

[PF10] Unassigned 15

[PF11] Unassigned 11

[PF12] Reserved 12

[PA1] Refresh Refreshes the current screen 14

Chapter 4. Debugging in Menu Mode 4-5

4.2 Screen design

The default control key assignments can be changed at DC/UCF system generation
time with the KEYS statement.

�� For more information on the KEYS statement used in system generation, see
CA-IDMS System Generation.

The Keys screen displays the key assignments for your particular installation.

Currency line: The currency line displays the current values for five variable
fields:

■ The entity type indicates whether a program, dialog, map, table or subschema
load module is currently being debugged

■ The entity name field displays the name of the current entity

■ V:version-n displays the version number associated with the current entity

■ The section type field indicates whether a dialog process or a program CSECT is
currently being debugged.

■ The section name field displays the current CSECT or process name

When the current entity is a program, the currency line reads like this:

PROGRAM: PROG<1 V:3 CSECT:

When the current entity is a dialog, the currency line reads like this:

DIALOG: MISINDC V: 1 PROCESS: MIS-MAIN2

The currency line remains constant until there is a change in the entity of the CSECT
or process being debugged. You can change the current CSECT or process by:

■ Overwriting the name on the screen and pressing [Enter] to automatically initiate
the QUALIFY command

■ Issuing the QUALIFY command on the prompt line

Prompt line: The prompt line is prefaced by an arrow (→) and functions in the
same manner as the DEBUG> prompt in prompt mode. You can use the prompt line
on any screen during menu mode; you can submit a single debugger command or a
string of commands at any time.

Key Action Description Function

[PA2] Exit Exits the debugger 10

[Clear] Return Goes back one level 16

[Enter] Process Processes the current screen 13

4-6 CA-IDMS Online Debugger

4.2 Screen design

�� For a complete discussion of the debug expressions and commands that you can
enter on the prompt line, see 2.2, “Expression components” on page 2-4 in Chapter 2,
"Command Considerations" and Chapter 3, “Debugger Commands” on page 3-1.

 4.2.2 Display area

Contents: The display area is reserved to display:

■ The information being presented for each of the help screens

■ Output you have requested from the debugger

■ Informational and error messages supplied by the debugger

 4.2.3 Specification area

Contents: The specification area contains fields in which you can specify the
desired options for the command being used. The contents of the specification area
vary from screen to screen, and not all screens have a specification area.

Screen content in the specification area of the activity screens is saved for as long as
the command is current. This feature allows you to suspend action on a partially filled
screen while seeking further information.

For example, you can:

■ Begin to fill the activity screen for the List command

■ Switch to the Symbols help screen to review program or debugger symbols

■ Return to the List screen, where all previous input remains intact

�� For more information about command currency, see 4.3.4, “Command currency” on
page 4-11.

 4.2.4 Selection area

List of procedures: The selection area presents a list of the debugger commands
and global help screens that you can initiate from the screen. You can select the next
action by entering any character other than a blank or an underscore in the response
field to the left of an activity or help function.

Two sections: You can select actions from one of two sections:

■ Section A displays the choice of command-specific activity and help screens:

NEXT _ ACTIVITY OR _ HELP

_ AT _LIST _SET _SNAP _RESUME _ DEBUG _WHERE

 _EXIT _PROMPT _QUIT _IOUSER

Chapter 4. Debugging in Menu Mode 4-7

4.2 Screen design

■ Section B displays the choice of global help screens:

HELP SCREENS: _ USAGE _ SYMBOLS _ KEYS

Command-specific activities: When choosing from Section A, you first select
Activity (the default) or Help and then choose one of the commands. If you select
Activity, the system can:

■ Execute immediately an EXIT, PROMPT, QUIT, or IOUSER command

■ Display the activity screen for an AT, LIST, SET, SNAP, RESUME, or DEBUG
command

■ Display the information requested by the WHERE command

Control keys can also be used to request activities.

Selecting help If you select Help from Section A, the system displays a command-
specific help screen.: If you mark the select byte for Activity or Help but do not
choose a specific command, the system displays the activity or help screen for the
current command. The debugger system displays an error message if there is no
current command.

You can choose a global help screen from Section B.

Each of the activity screens and global help screens is described in detail later in this
chapter.

4-8 CA-IDMS Online Debugger

4.3 Accessing screens

 4.3 Accessing screens

Considerations: When moving between screens, you need to consider:

 ■ Screen hierarchy

 ■ Screen sequence

 ■ Selection processing

 ■ Command currency

 4.3.1 Screen hierarchy

Three screen levels: The debugger supports three levels of screens:

Usage screen: The Usage screen is an informational global help screen that con-
tains a list of the debugger commands and a brief description of their functions. The
Usage screen is the default screen for the MENU command.

Activity screens: Activity screens are screens that provide you with an area for
specifying command options. The debugger provides activity screens for the AT,
DEBUG, LIST, RESUME, SET, and SNAP commands. You can initiate these com-
mands from the activity screens once you've entered the necessary information in the
specification area.

Help screens: Help screens provide two types of assistance:

■ Command-specific help screens supply tutorial information on all the debugger
commands. When the command is one that uses an activity screen, the help
screen for that command also describes the field options.

■ Global help screens provide information not associated with a particular command.
For example, the Symbols screen enables you to choose a display of program and
debugger symbols for the current session, and the Keys screen displays site-
specific PF-key assignments.

Screens Level

Usage screen Top

Activity screens Second

Help screens Third

Chapter 4. Debugging in Menu Mode 4-9

4.3 Accessing screens

 4.3.2 Screen sequence

Next activity or [Clear]: You can change to the next screen by:

■ Explicitly specifying the next activity to be performed

■ Using the [Clear] key (or the key associated with function 16)

Specifying the next activity: You can select an activity by:

■ Using the control key associated with the activity to be performed

Default control key assignments are discussed in "Heading area" earlier in this
chapter. The Keys screen displays a list of the current function assignments for
your installation.

■ Entering a nonblank character in the response field to the left of the activity
to be performed

You can use any character other than a blank or an underscore. The choice of
actions is listed in the selection area of each screen. For a description of the
selection area, see 4.2, “Screen design” on page 4-4 earlier in this chapter.

Using [Clear]: The performance of [Clear] depends on the screen level from which
you initiate the action:

■ From an activity screen, [Clear] displays the Usage screen

■ From the Symbols screen, the Keys screen, or one of the command-specific Help
screens:

– When there is a current command, [Clear] displays the activity screen for
the current command

– When there is no current command, [Clear] displays the Usage screen

■ From the Usage screen, [Clear] returns control to DC/UCF

 4.3.3 Selection processing

Order of precedence: The debugger determines its next action based on these
factors, in order of precedence:

1. The control key used to initiate a particular action

2. The select byte(s) marked in the selection area

3. The page number designated in the heading area

4. Commands initiated from the menu-mode prompt line

5. Commands initiated from the specification area

Once an action is identified for processing, the system ignores all other requested
actions.

4-10 CA-IDMS Online Debugger

4.3 Accessing screens

Example: For example, if the USAGE screen is your current screen and you choose
the AT activity from the selection area and then press the CLEAR key, the CLEAR
key takes precedence and you are returned to DC/UCF.

 4.3.4 Command currency

Repeating a command: Command currency is a feature of menu mode that sim-
plifies the debugging process when you use the same command in successive actions.
With command currency, you select the command the first time only.

Defining the current command: The current command is defined as the most
recent debugger command referenced on a command-specific help screen or an activity
screen. No current command exists until you take either of two actions:

■ Use the screen-name option with the MENU command to name an activity screen.

For example, the command MENU LIST establishes the LIST command as the
current command.

■ Designate a command from the activity or help selection list at the bottom of any
screen.

The newly-selected command functions as the current command.

The current command is the default command. This means that the debugger system
automatically displays the appropriate screen for the current command.

You can choose Activity or Help in the selection area, or press the control key associ-
ated with either of these actions, without specifying a command. If no current
command has been established when you make any of the above choices, the debugger
system displays an error message.

Changing command currency: You can change command currency in the same
way you establish it.

For example, if the current command is LIST, mark the select byte for the SET
command and press the control key associated with the current command-specific help
screen (for example, [PF4]). The Help screen for SET appears, because SET is the
newly-designated current command.

Command currency does not change when you:

■ Enter a command on the screen prompt line.

For example, while setting breakpoints with the At screen, you can use the prompt
line to request a memory display with the LIST command. In this case, the AT
command remains as the current command.

■ Select a global help screen, that is, a screen that is not associated with a specific
debugger command.

For example, you can move from the LIST command activity screen to the Usage,
Symbols, or Keys screen without changing command currency.

Chapter 4. Debugging in Menu Mode 4-11

4.4 Activity screens

 4.4 Activity screens

Format: An activity screen is provided for any debugger command that has fields
for user-supplied values. Some fields are required and others have default values or
are optional. The command-specific area of the activity screens is the specification
area; all other areas have the standard format presented in "Screen design" above.

 4.4.1 At screen

Purpose: You can use the At screen to:

 ■ Add breakpoints

 ■ Modify breakpoints

 ■ Delete breakpoints

■ Inquire about the breakpoints that have already been set

As explained in "Debugger features", Chapter 1, breakpoint temporarily halts proc-
essing, allowing you to examine the results of execution up to the point of interruption.

Remember: Processing is halted before the instruction at the breakpoint is executed.

The AT command can be used in both the setup and runtime phases of the debugger.

Two sections: The specification area of the At screen has two separate sections:

■ The first section sets new breakpoints:

ADD BREAKPOINT AT:

BEFORE: MAX AFTER: < EVERY: 1

■ The second section inquires about existing breakpoints, or deletes them:

OTHER ACTION.......: (I-INQUIRE/D-DELETE/G-IGNORE)

BREAKPOINT OR <ALL>:

■ Both sections modify breakpoints

You can specify both sections of the screen at the same time.

Field options: These are the field options for this area:

ADD BREAKPOINT AT:
Designates the location in your program that will contain a breakpoint. The speci-
fied value can include one or more debug expressions resolving to an address that
contains a valid instruction or, for CA-ADS dialogs, a valid CME.

Remember: It is not valid to set a breakpoint at the target of an Assembler
execute (EX) instruction.

4-12 CA-IDMS Online Debugger

4.4 Activity screens

BEFORE: MAX
Specifies the execution pause on encountering the instruction up to, but not
including, the specified number of times. The default (MAX) is to pause as many
times as the instruction is encountered.

AFTER: 0
Specifies that the debugger will pause at the breakpoint after the instruction has
been executed the specified number of times. The default (0) is to start pausing
when the instruction is first encountered.

EVERY: 1
Specifies an execution pause every time the counter for the breakpoint instruction
reaches a multiple of the value specified. The default (1) is to pause every time
the instruction is encountered.

Tip: If you don't change the defaults, the debugger will pause each time the
breakpoint instruction is encountered.

OTHER ACTION...: (I-INQUIRE/D-DELETE/G-IGNORE)

■ I requests a listing of the breakpoint location and characteristics

■ D removes the breakpoint

■ G bypasses the breakpoint but increments the breakpoint counter

BREAKPOINT OR <ALL>:
Indicates the breakpoints affected by the Other Action field. You can indicate a
specific breakpoint (that is, a debug-expression), or specify that the action applies
to ALL breakpoints within the current program or dialog.

 4.4.2 Debug screen

Two sections: The specification area of the Debug screen also has two sections:

■ The first section designates the load module to be debugged:

DEBUG LOAD MODULE...: TYPE: P (P-PGM/D-DIALOG/M-MAP/T-TABLE/S-SS)

VERSION.............:

■ The second section inquires about certain debugged modules or removes modules
from the debugging process:

OTHER ACTION........: (I-INQUIRE/D-DELETE)

LOAD MODULE OR <ALL>:

VERSION.............:

You can submit both types of requests at the same time.

Field options: These are the field options for this area:

DEBUG LOAD MODULE...:
Identifies the name of the entity to be debugged. The entity name can be up to
eight characters long.

Chapter 4. Debugging in Menu Mode 4-13

4.4 Activity screens

TYPE: P (P-PGM/D-DIALOG/M-MAP/T-TABLE/S-SS)
Identifies the type of module to be debugged:

■ P (the default) identifies a program

■ D identifies a CA-ADS dialog

■ M identifies a map

■ T identifies an edit or code table

■ S identifies a subschema

VERSION......:
Identifies the version of the load module to be debugged. If the version is not
specified, the debugger uses the version you have set with DCUF TEST, or if
none, version 1.

OTHER ACTION....: (I-INQUIRE/D-DELETE)

■ I requests a display of the load module(s) being debugged in this session

■ D requests that the specified module(s) be removed from the list of load
modules known to the debugger

LOAD MODULE OR <ALL>:
Indicates the load module(s) affected by the specified Other Action value. An
entity-name identifies the single load module for which I or D is requested. Using
All requests I or D for all load modules being debugged.

VERSION......:
Identifies the version of the load module for which I or D is requested. If no
version is specified and there is more than one version of the load module being
debugged, the debugger displays or deletes all versions. If a version is specified,
the debugger displays or deletes only the specified version.

 4.4.3 List screen

Purpose: You can use the List screen to display storage areas, session attributes,
and debugger symbols at your terminal. The List screen can be used during setup and
at runtime.

The specification area of the List screen looks like:

LIST: M (M-MEMORY/A-ATTRIBUTES)

 MEMORY ONLY:

BEGIN LIST AT:

 LENGTH.......: - OR - END LIST AT:

LIST FORMAT..: B (C-CHARACTER/X-HEX/B-BOTH)

Field options: These are the field options for this area:

LIST: M (M-MEMORY/A-ATTRIBUTES)

■ M (the default) requests a list of an area of memory specified in the Memory
Only section of the screen

4-14 CA-IDMS Online Debugger

4.4 Activity screens

■ A requests a list of current session attributes; no other options need to be
specified on the screen in this case

BEGIN LIST AT:
Specifies the beginning location for the display. The beginning location can
include one or more debug expressions resolving to an address for which you have
retrieval security.

�� For information on the security methods used by the debugger, see CA-IDMS
Security Administration. This field is required if a memory display is selected.

LENGTH........:
Specifies the number of bytes to be displayed.

END LIST AT:
Specifies the ending location for the display. The ending location can include the
same debugger entities as those specified for the beginning location.

Important: If a resource is listed and the length or ending location exceeds the
resource boundary, the list is truncated at the boundary and the debugger
issues a warning message.

When neither Length nor End List At is specified, the length of the display is
based on two rules:

■ If the debug expression is composed of a single symbol, the data character-
istics of the symbol determine the default length. The number of bytes dis-
played is equal to the length attribute of the symbol.

■ If the expression does not have data characteristics, the default length is 16
bytes.

LIST FORMAT..: B (C-CHARACTER/X-HEX/B-BOTH)

■ C requests a display in character format

■ X requests a display in hexadecimal format

■ B (the default) requests a display in both character and hexadecimal format

 4.4.4 Resume screen

Purpose: You can use the Resume screen to instruct the runtime system to continue
program execution at the next instruction or at another location or to continue standard
processing of an abend.

The specification area of the Resume screen looks like:

RESUME: E (E-EXECUTION/A-ABEND)

EXECUTION ONLY:

LOCATION IF OTHER THAN BREAKPOINT:

Field options: These are the field options for this area:

Chapter 4. Debugging in Menu Mode 4-15

4.4 Activity screens

RESUME: E (E-EXECUTION/A-ABEND)
Indicates the next action of the runtime system:

■ E (the default) requests that execution continue at the next instruction or at
another location as indicated by the address specified in the Execution Only
section of the screen

■ A requests that standard DC/UCF abend processing, including the execution
of any STAE exit, should continue

LOCATION IF OTHER THAN BREAKPOINT:
Specifies the location at which execution is to continue. The specified value can
be a debug expression that resolves to an address containing a valid instruction or
a valid CME (CA-ADS dialogs only).

 4.4.5 Set screen

Purpose: You can use the Set screen to modify selected areas of storage and session
attributes. The Set screen can be used during setup and at runtime.

The specification area of the Set screen looks like:

SET: M (M-MEMORY/C-CHARACTER/X-HEX/B-BOTH)

MEMORY ONLY:

BEGIN SET MEMORY AT:

 EQUALS......:

RESET.......: N (Y-YES/N-NO)

Field options: These are the field options for this area:

SET: M (M-MEMORY/C-CHARACTER/X-HEX/B-BOTH)

■ M (the default) requests modification of the area of memory specified in the
Memory Only section of the screen

■ The other three options pertain to the setting of session attributes:

– C requests a display in character format

– X requests a display in hexadecimal format

– B requests a display in both character and hexadecimal format

BEGIN SET MEMORY AT:
Specifies the beginning location of the entity to be modified. The beginning
location can be a debug expression that resolves to an address for which you have
update security. A beginning location value is required when you are updating
memory.

If the debug expression is a symbol with data characteristics, the length of the
symbol is used in the set. Otherwise, the data characteristics of the source field
are used in the set.

Remember: The debugger does not allow a set across resource boundaries.

4-16 CA-IDMS Online Debugger

4.4 Activity screens

EQUALS......:
Indicates the new value that will be assigned to the entity. You can supply an
explicit value or a data field name, as in these examples:

h'<3'

f'9956'

x'f<c4'

c'edit'

p'1234'

'customer-name-<145'

The EQUALS field is required when you are updating memory.

RESET.......: N (Y-YES/N-NO)
Indicates the disposition of the original storage value:

■ Y requests that the named storage be reset to its original value at the end of
the debugging session; this option is not supported for release 10.2 of the
debugger

■ N (the default) requests that the named storage not be reset to its original
value at the end of the debugging session

This option does not affect storage in the debugged program itself since a special
copy of the program is loaded for the debugging session.

 4.4.6 Snap screen

Purpose: The Snap screen lets you create and write a dump to the DC/UCF log at
any point in the debugging session, in order to make a hard copy of storage contents.

Remember: To obtain a hard copy of the Snap dump, use the Batch Command
Facility utility.

The specification area of the Snap screen looks like:

SNAP: (A-AREA/T-TASK) TITLE:

SKIP: (1-ONE LINE/2-TWO LINES/3-THREE LINES/T-TOP OF NEXT PAGE)

AREA ONLY:

BEGIN SNAP AT:

LENGTH: -OR- END SNAP AT:

Field options: These are the field options for this area:

SNAP: (A-AREA/T-TASK)

■ A requests a dump of the memory area specified in the fields in the Area
Only section of the screen

■ T requests a dump of all resources associated with the executing task

This is a required field on the Snap screen.

TITLE:
Specifies an optional title for the snap. The title can contain up to 42 characters.
Do not enclose the title in quotation marks. An apostrophe in the title must be

Chapter 4. Debugging in Menu Mode 4-17

4.4 Activity screens

coded as two single quotes. When a title is not specified, a default title is written
to the log:

USER user-id

SKIP: (1-ONE LINE/2-TWO LINES/3-THREE LINES/T-TOP OF NEXT
PAGE)
Indicates the carriage control that will be used for placement of the title:

■ 1 skips one line

■ 2 skips two lines

■ 3 skips three lines

■ T skips to the top of the next page

If you specify nothing, two lines are skipped.

BEGIN SNAP AT:
Specifies the location at which to begin the snap. The beginning location can be a
debug expression that resolves to an address for which you have retrieval security.
This field is required when snapping an area.

LENGTH:
Indicates the number of bytes to be snapped.

END SNAP AT:
Indicates the ending location of the snap. The ending location can specify the
same types of debug expressions as those used in the Begin Snap At field.

When you do not specify an ending location or a specific length, the default
length is based on two rules:

■ If the debug expression is composed of a single symbol, the data character-
istics of the symbol determine the default length. The number of bytes
dumped is equal to the default length of the symbol.

■ If the expression does not have data characteristics, the default length is 256
bytes.

4-18 CA-IDMS Online Debugger

4.5 Global help screens

4.5 Global help screens

Three available: The debugger provides three global help screens, one each of
commands, symbols and control keys.

 4.5.1 Usage screen

Top-level screen: The Usage screen is the top-level screen for menu mode. It
presents a list of all debugger commands and summarizes the command functions.
The Usage screen looks like this:

? @
IDMS-DC REL 15.< ONLINE DEBUGGER CCC USAGE CCC SETUP PAGE 1 OF 4

 PROGRAM: V: CSECT:

 ->

 PROCEDURAL COMMANDS.

EXIT.....RETURNS CONTROL TO IDMS-DC/UCF WITHOUT TERMINATING THE CURRENT DEBUGGER

 SESSION.

QUIT.....TERMINATES THE DEBUGGER SESSION AND RETURNS CONTROL TO IDMS-DC/UCF.

PROMPT...INVOKES THE PROMPT MODE OF THE DEBUGGER.

 RETRIEVAL COMMANDS.

AT.......ESTABLISHES OR MODIFIES BREAKPOINTS WITHIN A USER PROGRAM.

DEBUG....DESIGNATES, DURING THE SETUP PHASE, THE ENTITY TO BE DEBUGGED OR

INQUIRES ABOUT ENTITIES KNOWN TO THE DEBUGGER.

IOUSER...DISPLAYS THE USER SCREEN THAT IS CURRENT WHEN A BREAKPOINT, PROGRAM

INTERRUPT OR TRAPPED ABEND IS ENCOUNTERED.

NEXT _ ACTIVITY OR _ HELP:

 _ AT _ LIST _ SET _ SNAP _ RESUME _ DEBUG _ WHERE

 _ EXIT _ PROMPT _ QUIT _ IOUSER

 HELP SCREENS: _ USAGE _ SYMBOLS _ KEYS

I J

 4.5.2 Symbols screen

Has a specification area: The Symbols screen lets you list program or debugger
symbols owned by the entity being debugged. The Symbols screen is the only global
help screen with a specification area:

Chapter 4. Debugging in Menu Mode 4-19

4.5 Global help screens

? @
IDMS-DC REL 15.< ONLINE DEBUGGER CCC SYMBOLS CCC SETUP PAGE 1 OF 1

 PROGRAM: V: CSECT:

 ->

SYMBOLS TO DISPLAY: P (P-PROGRAM/D-DEBUGGER)

SYMBOL OR SEARCH STRING:

NEXT _ ACTIVITY OR _ HELP:

 _ AT _ LIST _ SET _ SNAP _ RESUME _ DEBUG _ WHERE

 _ EXIT _ PROMPT _ QUIT _ IOUSER

 HELP SCREENS: _ USAGE _ SYMBOLS _ KEYS

I J

Field options: These are the field options for the specification area:

SYMBOLS TO DISPLAY: P (P-PROGRAM/D-DEBUGGER)
Indicates whether program symbols (P) or debugger symbols (D) for the current
entity are to be displayed. The default is P. The symbols are listed alphabet-
ically.

SYMBOL OR SEARCH STRING:
Identifies a specific symbol or string that begins the display. When this field does
not contain an entry, all specified program or debugger symbols are displayed
from the beginning of the list

Example: For example, to begin the display with program symbols prefaced by
MIS, you would supply this information on the screen:

SYMBOLS TO DISPLAY: p (P-PROGRAM/D-DEBUGGER)

SYMBOL OR SEARCH STRING: mis

 4.5.3 Keys screen

Installation-specific: The Keys screen provides a list of the current control key
assignments for your particular installation. The information displayed on this screen
reflects the installation-specific key assignments made with the KEYS statement when
the system was generated. The Keys screen contains the most up-to-date information
on control key assignments. If an assignment is modified after the system is gener-
ated, the Keys screen is also modified automatically.

A sample Keys screen is shown below.

4-20 CA-IDMS Online Debugger

4.5 Global help screens

? @
IDMS-DC REL 15.< ONLINE DEBUGGER CCC KEYS CCC SETUP PAGE 1 OF 1

 PROGRAM: V: CSECT:

 ->

 PFKEY ACTIVITY PFKEY ACTIVITY

----- -------- ----- --------

 ENTER PROCESS CURRENT SCREEN PF5 SYMBOLS SCREEN

 CLEAR PREVIOUS LEVEL PF6 PFKEYS SCREEN

 PA1 REFRESH PF7 DISPLAY PREVIOUS PAGE

 PA2 EXIT PF8 DISPLAY NEXT PAGE

 PF1 USAGE SCREEN PF9 CHANGE TO PROMPT MODE

 PF2 UNASSIGNED PF1< UNASSIGNED

 PF3 ACTIVITY SCREEN PF11 UNASSIGNED

 PF4 ACTIVITY HELP SCREEN PF12 RESERVED

NEXT _ ACTIVITY OR _ HELP:

 _ AT _ LIST _ SET _ SNAP _ RESUME _ DEBUG _ WHERE

 _ EXIT _ PROMPT _ QUIT _ IOUSER

 HELP SCREENS: _ USAGE _ SYMBOLS _ KEYS

I J

˚

Chapter 4. Debugging in Menu Mode 4-21

4-22 CA-IDMS Online Debugger

Chapter 5. Aids for Debugging Assembler, COBOL,
and PL/I Programs

5.1 Overview . 5-3
5.2 Compiler options . 5-4
5.3 COBOL programs . 5-5

5.3.1 Preliminary computations . 5-5
5.3.2 Sample COBOL online debugger session 5-9

5.4 PL/I programs . 5-11
5.4.1 Preliminary computations . 5-11
5.4.2 Sample PL/I online debugger session 5-14

Chapter 5. Aids for Debugging Assembler, COBOL, and PL/I Programs 5-1

5-2 CA-IDMS Online Debugger

5.1 Overview

 5.1 Overview

This chapter discusses online debugger usage with Assembler, COBOL, and PL/I pro-
grams. To effectively use the debugger with these languages, specific compiler
options must be utilized to produce listings to obtain required information. The com-
piler options for each programming language are shown in the next topic.

To use the debugger with COBOL or PL/I programs, some preliminary computations
must be done to calculate the exact location of variable storage fields or object code to
set breakpoints. This chapter contains a discussion of these calculations and sample
debugger sessions for both languages.

Chapter 5. Aids for Debugging Assembler, COBOL, and PL/I Programs 5-3

5.2 Compiler options

 5.2 Compiler options

The following table shows the compiler options which provide the information
required to use the online debugger to analyze your program.

Language Object Code Variable Storage

VS-COBOL PMAP or CLIST DMAP

VS-COBOL II COBOL
for OS/390 and VM/ESA
COBOL for VSE/ESA

LIST or OFFSET MAP

PL/I LIST, XREF, and
OFFSET

STORAGE and MAP

Assembler LIST LIST

5-4 CA-IDMS Online Debugger

5.3 COBOL programs

 5.3 COBOL programs

This section discusses the preparation that is necessary before beginning to debug a
COBOL program and provides a sample COBOL debugging session.

Note: The discussion and sample debugger session that follow are for a program
compiled under the VS-COBOL compiler. The basic principals are the same
for other compiler levels such as VS-COBOL II or COBOL for OS/390 and
VM/ESA. Some specific differences are noted. For more information on reg-
ister conventions and program structure, refer to the appropriate IBM documen-
tation.

 5.3.1 Preliminary computations

Before beginning the debugging process, it is recommended to determine the break-
points that you want to set and the storage locations that you want to examine.

Breakpoints: To determine the hexadecimal offset of an executable program
instruction at which you want to set a breakpoint, perform the following steps:

1. Examine the COBOL compiler portion of your listing and record the line number
of the statement at which you want to set the breakpoint:

<<787 C

<<788 C OBTAIN EMPLOYEE DB-KEY IS EMP-DBKEY

<<789 C ON ANY-STATUS

<<79< MOVE < TO DCNUM1 DCNUM2 DCFLG1 DCFLG2

<<791 MOVE <<28 TO DML-SEQUENCE

<<792 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL

<<793 IDBMSCOM (<6)

<<794 SR415

<<795 EMP-DBKEY

<<796 IDBMSCOM (43)

��797 IF NOT ANY-STATUS PERFORM IDMS-STATUS;
<<798 ELSE

<<799 NEXT SENTENCE.

<<8<< IF DB-REC-NOT-FOUND

<<8<1 C MAP OUT USING DCTEST<1

<<8<2 C MESSAGE IS EMP-NOT-FOUND-MESS

<<8<3 C TO EMP-NOT-FOUND-MESS-END

<<8<4 C DETAIL CURRENT

2. Examine the condensed listing (CLIST) portion of the COBOL compiler listing,
locate the previously recorded COBOL line number, and record its corresponding
hexadecimal displacement value:

 CONDENSED LISTING

 . .

 . .

785 MOVE <<1CCC 786 GO <<1CD<

79< MOVE <<1CD6 791 MOVE <<1CEE

792 CALL <<1CF4 797 IF <<1D3E

797 PERFORM ��1D4C 8<< IF <<1D74

8<5 MOVE <<1D8< 8<6 MOVE <<1D98

8<7 MOVE <<1D9E 8<8 MOVE <<1DA4

 . .

 . .

Chapter 5. Aids for Debugging Assembler, COBOL, and PL/I Programs 5-5

5.3 COBOL programs

WORKING-STORAGE SECTION variables: To determine the register assign-
ment and offset of WORKING- STORAGE SECTION variables, perform the fol-
lowing steps:

1. Locate the register assignment portion of the COBOL compiler listing and record
the base locator (BL) number that corresponds to each register listed:

REGISTER ASSIGNMENT

 REG 6 BL =1

Note: For some WORKING-STORAGE or LINKAGE SECTION fields, there
may not be a fixed register which always points to the base locator for
linkage (BLL) cell. However, the BL cell is at a given offset from the
beginning of the TGT.

For compiler levels prior to COBOL for OS/390 and VM/ESA, register 13
usually points to the TGT at runtime. For COBOL for OS/390 and
VM/ESA and higher-level compilers, register 9 usually points to the TGT
at runtime.

A copy of the TGT and WORKING STORAGE is allocated in the
CA-IDMS storage pools for each task at runtime. Therefore, you must not
use the TGT or WORKING STORAGE in the program pool.

2. Locate the data map (DMAP) portion of the COBOL compiler listing and record
the displacement value and register assignment for each variable that you want to
examine during the debugging process:

DNM=1-364 <1 LONGTERM-TEST BL=1 <38 DNM=1-364 DS 4C COMP

DNM=1-387 <1 EMP-DBKEY BL=1 <4< DNM=1-387 DS 1F COMP

DNM=1-4<6 <1 FIRST-PAGE-SW BL=1 <48 DNM=1-4<6 DS 1C DISP

DNM=1-432 88 LESS-THAN-A-PAGE DNM=1-432

 .

 .

 .

DNM=4-276 <1 SUBSCHEMA-CTRL BL=1 26< DNM=4-276 DS OCL32< GROUP

DNM=4-3<3 <2 PROGRAM-NAME BL=1 26< DNM=4-3<3 DS 8C DISP

DNM=4-325 �2 ERROR-STATUS BL=1 268 DNM=4-325 DS 4C DISP
DNM=4-35< 88 DB-STATUS-OK DNM=4-35<

DNM=4-376 88 ANY-STATUS DNM=4-376

DNM=4-399 88 ANY-ERROR-STATUS DNM=4-399

DNM=4-425 88 DB-END-OF-SET DNM=4-425

DNM=4-452 88 DB-REC-NOT-FOUND DNM=4-452

DNM=6-<28 <2 DBKEY BL=1 26C DNM=6-<28 DS 4C COMP

DNM=6-<43 <2 RECORD-NAME BL=1 27< DNM=6-<43 DS 16C DISP

 .

 .

LINKAGE SECTION variables: To determine the location of LINKAGE
SECTION variables, perform the following steps:

1. Examine the memory map portion of the COBOL compiler listing and locate the
hexadecimal displacement values for the TGT and for the base locator for linkage
(BLL) cells:

5-6 CA-IDMS Online Debugger

5.3 COBOL programs

 MEMORY MAP

 TGT ��868

 SAVE AREA <<868

 SWITCH <<8B<

 TALLY <<8B4

 SORT SAVE <<8B8

 ENTRY-SAVE <<8BC

 .

 .

 .

 TEMP STORAGE-3 <<A78

 TEMP STORAGE-4 <<A78

 BLL CELLS ��A78
 VLC CELLS <<A8C

 .

 .

2. Perform the following calculation to determine the displacement value for the BLL
cells:

BLL CELLS - TGT = displacement for BLL cells

X'A78' - X'868' = X'2<8'

3. Locate the BLL number for the first LINKAGE SECTION variable from the
DMAP portion of the compiler listing:

DNM=14-361 <1 PASS-DEPT-INFO BLL=3 <<< DNM=14-361 DS OCL5 GROUP

DNM=14-391 <2 PASS-DEPT-ID BLL=3 <<< DNM=14-391 DS 4C DISP-NM

DNM=14-416 <2 PASS-DEPT-INFO-END BLL=3 <<4 DNM=14-416 DS 1C DISP

DNM=14-444 <1 ERROR-DATA BLL=4 <<< DNM=14-444 DS OCL9 GROUP

DNM=14-467 �2 ERROR-DEPT-ID BLL=4 ��� DNM=14-467 DS 4C DISP-NM
DNM=15-<<< <2 ERROR-MESSAGE-CODE BLL=4 <<4 DNM=15-<<< DS 4C DISP

DNM=15-<31 <2 ERROR-DATA-END BLL=4 <<8 DNM=15-<31 DS 1C DISP

4. Save the displacement values of the BLL cells and the BLL numbers of
LINKAGE SECTION variables for use during the runtime phase to obtain the
absolute address for LINKAGE SECTION values.

You can use the following table to record displacement information before starting a
debugger session.

Chapter 5. Aids for Debugging Assembler, COBOL, and PL/I Programs 5-7

5.3 COBOL programs

5-8 CA-IDMS Online Debugger

5.3 COBOL programs

5.3.2 Sample COBOL online debugger session

To use the online debugger with a DC/UCF VS-COBOL program, perform the steps
shown below. The steps may need to be modified for other compilers such as
VS-COBOL II or COBOL for OS/390; however, the basic methodology is the same.

1. Compile the program with the DMAP and CLIST compiler options before
defining it to the DC/UCF system.

Note: To obtain the complete Assembler source code, substitute CLIST with
PMAP.

2. Record breakpoint and storage displacements, as explained earlier under COBOL
Programs.

3. Initiate the debugger session by entering the DEBUG task code from the DC/UCF
system. The DEBUG> prompt displays indicating that the debugger is in control:

ENTER NEXT TASK CODE:

debug

DEBUG>

4. Specify the program to be debugged by entering DEBUG followed by the program
name. The debugger verifies the program name:

DEBUG>

debug testprog

DEBUG TESTPROG

DEBUG> DEBUGGING INITIATED FOR TESTPROG VERSION 1

DEBUG>

5. Establish breakpoints by issuing the AT command followed by a dollar sign,
which signifies the address of the beginning of the program; follow the dollar sign
with the command's hexadecimal offset. The debugger verifies the establishment
of the breakpoint:

DEBUG>

at $ + @1d4c

AT @1D4C

AT> @1D4C ADDED

DEBUG>

After all breakpoints have been set, leave the setup phase of the debugger session
by issuing the EXIT command:

DEBUG>

exit

6. Initiate the runtime phase by issuing the task code that invokes the task in which
the program participates:

ENTER NEXT TASK CODE:

deptmod

Chapter 5. Aids for Debugging Assembler, COBOL, and PL/I Programs 5-9

5.3 COBOL programs

When a breakpoint is encountered at runtime, the debugger assumes control and
identifies the address, program, and the debugger expression that was used to
establish the breakpoint:

AT OFFSET @1D4C IN TESTPROG EXPRESSION @1D4C

DEBUG>

7. Examine program variable storage by issuing LIST commands. Use indirect
addressing and the previously noted register and offset:

list %:r6 + @268 32

LIST %:R6 + @268 32

<<14<27< E3C5E2E3 D7D9D6C7 F<F<F<F< 3D3D4F<6 CTESTPROG<<<<..|.C

<<14<28< C4C5D7C1 D9E3D4C5 D5E34<4< 4<4<4<4< CDEPARTMENT C

To examine LINKAGE SECTION variables, perform the following steps:

a. List the contents of register 13 plus the previously determined BLL displace-
ment using indirect addressing:

DEBUG>

list %:rR13 + @2<8

LIST %:R13 + @2<8

(BLL1) (BLL2) (BLL3) (BLL4)

<<1499E< <<<<<<<< <<<<<<<< <<<<<<<< <<149AC8 C...............HC

Each BLL is 4 bytes long. Note the absolute address located in the BLL for
the field that you want to display.

b. List the absolute address to display the LINKAGE SECTION values:

DEBUG>

LIST @149ac8 16

<<149AC8 F1F1F1F1 C4C5D7E3 <<<<<<<< <<<<<<<< C1111DEPT........C

8. Enter the RESUME command from the DEBUG> prompt to continue program
execution:

DEBUG>

resume

9. Enter the QUIT command from the DEBUG> prompt to end a debugger session:

DEBUG>

quit

QUIT

QUIT DEBUGGER

ENTER NEXT TASK CODE:

5-10 CA-IDMS Online Debugger

5.4 PL/I programs

 5.4 PL/I programs

This section discusses the preparation that is necessary before beginning to debug a
PL/I program and provides a sample PL/I debugging session.

Note: The discussion and sample debugger session that follow are for a program
compiled under the PL/I Version 2.3 compiler. The basic principals are the
same for other compiler levels such as PL/I for OS/390 and VM/ESA. For
more information on register conventions and program structure, refer to the
appropriate IBM documentation.

 5.4.1 Preliminary computations

Before beginning the debugging process, it is recommended to determine the break-
points that you want to set and the storage locations that you want to examine.

Breakpoints: To determine the hexadecimal offset of an executable program
instruction at which you want to set a breakpoint, perform the following steps:

1. Examine the cross-reference table portion of your link-edit listing for an entry in
the form program-name1. Record the hexadecimal offset listed under ORIGIN:

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY

 NAME ORIGIN LENGTH NAME LOCATION

PLISTART OO 5<

 PLICALLA 6

PLIMAIN 5< 8

CPLIPROG2 58 394

/PLIPROG1 3F� EB4
 PLI3PROG 3F8

IDMSPLI 12A8 284

2. Examine the PL/I compiler portion of your listing and record the line number of
the statement at which you want to set the breakpoint:

133 WORK_LAST = EMP_LAST_NAME_<415;

134 WORK_FIRST = EMP_FIRST_NAME_<415;

 /C

MAP OUT (DCTEST<1) OUTPUT DATA YES

 MESSAGE (INITIAL_INSTRUCTIONS_MSG_1)

 LENGTH (25)

DETAIL NEW KEY (DBKEY).

 C/

135 /C IDMS PLI/I DML EXPANSION C/ DO;

136 DML_SEQUENCE=��13;
137 DCCFLG1=<;

138 DCCFLG1=13;

139 DCCFLG2=16;

14< DCCFLG3=<;

141 DCCFLG4=4;

142 DCCFLG5=72;

143 DCCFLG6=<;

3. Examine the Assembler listing generated by the LIST option, locate the previously
recorded PL/I line number, and record its corresponding hexadecimal displacement
value:

Chapter 5. Aids for Debugging Assembler, COBOL, and PL/I Programs 5-11

5.4 PL/I programs

C STATEMENT NUMBER 136

���6AA 41 8� 7 21C LA 8,SUBSCHEMA_CTRL.D
 CCALIGN_AREA.FILLE

 R<<<1

<<<6AE 58 4< 3 124 L 4,292(<,3)

<<<6B2 5< 4< 8 <<8 ST 4,SSC_ERRSAVE_AREA

 .DML_SEQUENCE

4. Add the origin offset and the breakpoint instruction's hexadecimal displacement to
obtain the breakpoint address:

X'3F<' + X'6AA' = X'A9A'

AUTOMATIC variables: To determine the offset of AUTOMATIC variables, locate
the variable storage map and record the displacement value for each variable that you
want to examine during the debugging process:

MAP_WORK_REC 1 796 31C AUTO
WORK_DEPT_ID 1 796 31C AUTO

WORK_EMP_ID 1 8<< 32< AUTO

WORK_FIRST 1 8<4 324 AUTO

WORK_LAST 1 814 32E AUTO

WORK_ADDRESS 1 829 33D AUTO

WORK_STREET 1 829 33D AUTO

WORK_CITY 1 849 351 AUTO

WORK_STATE 1 864 36< AUTO

WORK_ZIP 1 866 362 AUTO

WORK_DEPT_NAME 1 871 367 AUTO

You can locate AUTOMATIC variables at runtime through register 13.

STATIC INTERNAL variables: To determine the location of STATIC INTERNAL
variables, examine the static internal storage map to find the hexadecimal offset for
each variable that you want to examine during the debugging process.

You can locate STATIC INTERNAL variables at runtime through register 3.

You can use the following table to record displacement information before starting a
debugger session.

5-12 CA-IDMS Online Debugger

5.4 PL/I programs

Chapter 5. Aids for Debugging Assembler, COBOL, and PL/I Programs 5-13

5.4 PL/I programs

5.4.2 Sample PL/I online debugger session

To use the online debugger with a DC/UCF PL/I program, perform the following
steps:

1. Compile the program with the LIST, OFFSET, XREF STORAGE, and MAP com-
piler options before defining it to the DC/UCF system.

2. Record breakpoint and storage displacements, as explained above.

3. Initiate the debugger session by entering the DEBUG task code from the DC/UCF
system. The DEBUG> prompt displays indicating that the debugger is in control:

ENTER NEXT TASK CODE:

debug

DEBUG>

4. Specify the program to be debugged by entering DEBUG followed by the program
name. The debugger verifies the program name:

DEBUG>

debug pliprog

DEBUG PLIPROG

DEBUG> DEBUGGING INITIATED FOR PLIPROG VERSION 1

DEBUG>

5. Establish breakpoints by issuing the AT command followed by a dollar sign,
which signifies the address of the beginning of the program; follow the dollar sign
with the command's hexadecimal offset. The debugger verifies the establishment
of the breakpoint:

DEBUG>

at $ + @a9a

AT @A9A

AT> @A9A ADDED

DEBUG>

After all breakpoints have been set, leave the setup phase of the debugger session
by issuing the EXIT command:

DEBUG>

exit

6. Initiate the runtime phase by issuing the task code that invokes the task in which
the program participates:

ENTER NEXT TASK CODE:

deptmod

When a breakpoint is encountered at runtime, the debugger assumes control and
identifies the address, program, and the debugger expression that was used to
establish the breakpoint:

AT OFFSET @A9A IN PLIPROG EXPRESSION @BDE

DEBUG>

5-14 CA-IDMS Online Debugger

5.4 PL/I programs

7. Examine program variable storage by issuing LIST commands. Use indirect
addressing and the previously noted register and offset:

list %:r13 + @31c 32

LIST %:R13 + @31C 32

<<1DB7F4 F3F2F<F< F<F<F<F4 C8C5D9C2 C5D9E34< C32<<<<<4HERBERTC

<<1DB8<4 4<4<C3D9 C1D5C54< 4<4<4<4< 4<4<4<4< C CRANE C

If your program contains any nested procedures or begin blocks, you will need to
navigate the chain of dynamic storage areas (DSAs) to obtain the correct variable-
storage base address. To navigate the DSA chain for nested procedures or begin
blocks, list the contents of register 13 to determine the DSA for the current level
of nesting:

list %:r13

LIST %:R13

<<1C7A3< 842<<<<< <<1C7948 <<<<<<<< 5E422A2< CD...........;...C

For subsequent levels of nesting, perform the following steps:

a. List the absolute address which is located 4 bytes off of the previously dis-
played line:

list @1c7948

LIST @1C7948

<<1C7948 842<<<<< <<1C74D8 <<<<<<<< 4E4227EC CD......Q....+...C

b. List AUTOMATIC variable-storage values after the final level of nesting has
been reached. Use the absolute address as the base address, which is located
4 bytes off of the display:

DEBUG>

list 1c74d8 + @31c 32

LIST 1C74D8 + @31C 32

<<1C77F4 F3F2F<F< F<F<F<F4 C8C5D9C2 C5D9E34< C32<<<<<4HERBERT C

<<1C78<4 4<4<C3D9 C1D5C54< 4<4<4<4< 4<4<4<4< C CRANE C

To examine variables defined as BASED storage, perform the following steps:

a. List the contents of the associated pointer variable using indirect addressing:

DEBUG>

list %:r13 + @d4

LIST %:R13 + @D4

<<1499E< <<149AC8 <<<<<<<< <<<<<<<< <<<<<<<< C...H............C

b. List the absolute address to display the BASED variable's values:

DEBUG>

LIST @149ac8 16

<<149AC8 F1F1F1F1 C4C5D7E3 <<<<<<<< <<<<<<<< C1111DEPT........C

8. Enter the RESUME command from the DEBUG> prompt to continue program
execution:

Chapter 5. Aids for Debugging Assembler, COBOL, and PL/I Programs 5-15

5.4 PL/I programs

DEBUG>

resume

9. Enter the QUIT command from the DEBUG> prompt to end a debugger session:

DEBUG>

quit

QUIT

QUIT DEBUGGER

ENTER NEXT TASK CODE:

5-16 CA-IDMS Online Debugger

 Index

Special Characters
#ABEND 1-11

A
absolute address notation 2-5
address symbols

at sign (@) 2-5
cent sign (¢) 2-6
dollar sign ($) 2-5

Assembler programs
compiler options 5-4
debugging aids 5-3
LIST option 5-11

AT command examples 3-5
AUTOMATIC variables 5-12

B
base locator for linkage cell 5-6
base locator number 5-6
BASED storage variables 5-15
BL number 5-6
BLL cell 5-6
breakpoint counter 3-5
breakpoints

bypassing 3-5
encountering 1-11, 1-12, 3-5
listing 3-5
modifying 3-5
removing 3-5
setting 1-4, 1-11, 3-5, 5-5, 5-11
status 3-5
using 3-4

C
CLIST 5-4
COBOL programs

compiler options 5-4
debugging aids 5-3
sample debugger session 5-9

command format 2-18
commands

AT 3-4, 5-9, 5-14
DEBUG 3-7, 5-9, 5-14
EXIT 3-9, 5-9, 5-14
formatting 2-18

commands (continued)
IOUSER 3-10
LIST 3-11, 5-10, 5-15
MENU 3-14
modifying 2-15
PROMPT 3-15
QUALIFY 3-16
QUIT 3-18, 5-10, 5-16
RESUME 3-19, 5-10, 5-15
SET 3-20
SNAP 3-24
WHERE 3-26

compiler options 5-4
control block 3-18
currency

dialog process 3-16
inquire about 3-16
load module 3-7
process 2-8
program 1-14
reset 3-16

current process address 2-6
current screen 1-13

D
data characteristics 3-12

expressions with 2-11
expressions without 2-12
table 2-11

data fields
displaying 2-7
qualifying 2-7

data values
numeric 2-17
strings 2-17

DEBUG
command 1-7
prompt 1-6, 1-8
task code 1-6, 1-8

debug expressions
data characteristics 3-12
default length 2-11

debug expressions, components of
address symbols 2-5
debugger symbols 2-5
general registers 2-4
program status word (PSW) 2-4

Index X-1

debug expressions, components of (continued)
program symbols 2-7
special operators 2-9
standard operators 2-9
system symbols 2-4
user symbols 2-6

debugger commands 3-3—3-26
formatting 2-18
modifying 2-15
parsing 2-14

debugger control blocks 1-7
debugger features 1-4

breakpoints 1-4
debugger implementation 1-6—1-8, 5-3
debugger labels

cent sign (¢) 2-6
dollar sign ($) 2-5

debugger markers
at sign (@) 2-5

debugger session
Assembler programs 5-3
COBOL program, sample 5-9
COBOL programs 5-3
compiler options 5-3
definition 1-6
initiating 1-6, 3-8, 5-3
leaving 1-7, 3-18
length considerations 1-13
menu mode 1-8
PL/I program, sample 5-14
PL/I programs 5-3
prompt mode 1-6
runtime phase 1-11
setup phase 1-11
terminating 1-7, 3-9

debugger symbols 2-4
debugger variables

displaying 3-11
defining entities

to DC/UCF 1-6
to the debugger 1-6

display length 2-12
DMAP 5-4

E
efficient use of resources 1-13
expression components 2-4—2-10

G
general registers 2-4

L
length attributes 2-11
line numbers 2-8
LINKAGE SECTION variables 5-6
LIST 5-4
load address 2-5
location inquiry 3-26

M
MAP 5-4
memory

See also storage values
displaying 1-4
modifying 1-4

menu mode 1-8
multiple expressions 2-4

N
numeric values

decimal 2-17
fullword 2-17
halfword 2-17
hexadecimal 2-17

O
OFFSET 5-4

P
parsing rules 2-14
performance standards 1-13
PL/I programs

compiler options 5-4
debugging aids 5-3
sample debugger session 5-14

PMAP 5-4
process currency 2-8
processing overhead 1-13
program checks 1-11
program currency 1-14, 3-7
program status word (PSW) 2-4
program symbols

data field names 2-7
line numbers 2-8

X-2 CA-IDMS Online Debugger

program symbols (continued)
qualifying 2-8

prompt mode 1-6

R
resource

boundary 3-11
display truncation 3-11

rollbacks 3-9, 3-18
runtime phase 1-11

commands 1-12

S
session attributes

displaying 3-12, 3-22
setting 3-22

session modes
menu 1-8, 3-14
prompt 1-6, 3-15

setup phase 1-11
snap dumps 1-4, 3-24
special characters

at sign (@) 2-5
cent sign (¢) 2-6
dollar sign ($) 2-5
percent sign (%) 2-9

special operators 2-9
standard operators 2-9
STATIC INTERNAL variables 5-12
STORAGE 5-4
storage values

displaying 3-11
modifying 3-20

string values
character 2-17
hexadecimal 2-17
numeric 2-17

symbolic line numbers 2-8
system symbols 2-4

U
user symbols 2-6

V
valid addresses 1-14

See also command elements
valid breakpoints

See breakpoints

verification messages 1-7, 1-12, 1-14

W
WORKING-STORAGE SECTION variables 5-6

X
XREF 5-4

Index X-3

	CA-IDMS Online Debugger
	Contents
	How to use this manual
	Contents
	For more information
	Understanding syntax diagrams
	Sample syntax diagram

	Chapter 1. Introduction
	1.1 About the debugger
	1.2 Debugger features
	1.3 Debugging process
	1.3.1 Prompt mode
	1.3.2 Menu mode
	1.3.3 Setup phase
	1.3.4 Runtime phase

	1.4 Session considerations
	1.4.1 Performance standards
	1.4.2 Valid breakpoints
	1.4.3 Program currency

	Chapter 2. Command Considerations
	2.1 About this chapter
	2.2 Expression components
	2.2.1 Debugger symbols
	2.2.2 User symbols
	2.2.3 Program symbols
	2.2.3.1 Data field names
	2.2.3.2 Line numbers
	2.2.3.3 Qualifying program symbols

	2.2.4 Expression operators

	2.3 Length attributes
	2.3.1 Expressions with data characteristics
	2.3.2 Expressions without data characteristics

	2.4 Parsing rules
	2.5 Command modification
	2.6 Delimiters
	2.7 Data values
	2.8 Command format

	Chapter 3. Debugger Commands
	3.1 Summary of commands
	3.2 AT
	3.3 DEBUG
	3.4 EXIT
	3.5 IOUSER
	3.6 LIST
	3.7 MENU
	3.8 PROMPT
	3.9 QUALIFY
	3.10 QUIT
	3.11 RESUME
	3.12 SET
	3.13 SNAP
	3.14 WHERE

	Chapter 4. Debugging in Menu Mode
	4.1 Features of menu mode
	4.2 Screen design
	4.2.1 Heading area
	4.2.2 Display area
	4.2.3 Specification area
	4.2.4 Selection area

	4.3 Accessing screens
	4.3.1 Screen hierarchy
	4.3.2 Screen sequence
	4.3.3 Selection processing
	4.3.4 Command currency

	4.4 Activity screens
	4.4.1 At screen
	4.4.2 Debug screen
	4.4.3 List screen
	4.4.4 Resume screen
	4.4.5 Set screen
	4.4.6 Snap screen

	4.5 Global help screens
	4.5.1 Usage screen
	4.5.2 Symbols screen
	4.5.3 Keys screen

	Chapter 5. Aids for Debugging Assembler, COBOL, and PL/ I Programs
	5.1 Overview
	5.2 Compiler options
	5.3 COBOL programs
	5.3.1 Preliminary computations
	5.3.2 Sample COBOL online debugger session

	5.4 PL/ I programs
	5.4.1 Preliminary computations
	5.4.2 Sample PL/ I online debugger session

	Index
	Special Characters
	A
	B
	C
	D
	E
	G
	L
	M
	N
	O
	P
	R
	S
	U
	V
	W
	X

